精英家教网 > 高中物理 > 题目详情
9.如图所示,MN、PQ为足够长的平行导轨,间距L=0.5m.导轨平面与水平面间的夹角θ=37°.NQ⊥MN,NQ间连接有一个R=3Ω的电阻.有一匀强磁场垂直于导轨平面,磁感应强度为B=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,金属棒的电阻r=2Ω,其余部分电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行.已知金属棒与导轨间的动摩擦因数μ=0.5,当金属棒滑行至cd处时速度大小开始保持不变,cd 距离NQ为s=2m.试解答以下问题:(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)金属棒达到稳定时的速度是多大?
(2)从静止开始直到达到稳定速度的过程中,电阻R上产生的热量是多少?
(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t=1s时磁感应强度应为多大?

分析 (1)对金属棒进行受力分析,达到稳定速度时,即为做匀速运动,根据平衡条件列出等式求解.
(2)根据能量守恒得,重力势能减小转化为动能、摩擦产生的内能和回路中产生的焦耳热.再根据串联电路能量(功率)分配关系,就可求得电阻R上产生的热量.
(3)要使金属棒中不产生感应电流,则穿过线框的磁通量不变.同时棒受到重力、支持力与滑动摩擦力做匀加速直线运动.从而可求出磁感应强度B应怎样随时间t变化的.

解答 解:(1)在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有:
FA=B0IL   
mgsinθ=FA+μmgcosθ 
E=B0Lv
E=I(R+r)
由以上四式并代入已知数据,得v=2m/s
(2)根据能量守恒得,重力势能减小转化为动能、摩擦产生的内能和回路中产生的焦耳热.
有:$mgssinθ=\frac{1}{2}m{v^2}+μmgcosθ•s+Q$
电阻R上产生的热量:${Q_R}=\frac{R}{R+r}Q$
解得:QR=0.06J
(3)当回路中的总磁通量不变时,金属棒中不产生感应电流.此时金属棒将沿导轨做匀加速运动,故:
mgsinθ-μmgcosθ=ma
设t时刻磁感应强度为B,则产生的电动势:B0Ls=BL(s+x)
其中位移:$x=vt+\frac{1}{2}a{t^2}$
故t=1s时磁感应强度B=0.4T
答:(1)金属棒达到的稳定速度是2m/s;
(2)从静止开始直到达到稳定速度的过程中,电阻R上产生的热量是0.06J;
(3)t=1时磁感应强度应为0.4T.

点评 本题考查了牛顿运动定律、闭合电路殴姆定律、安培力公式、感应电动势公式,还有能量守恒.同时当金属棒速度达到稳定时,则一定是处于平衡状态,原因是安培力受到速度约束的.还巧妙用磁通量的变化去求出面积从而算出棒的距离.最后线框的总磁通量不变时,金属棒中不产生感应电流是解题的突破点.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:填空题

6.为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0cm的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为△t1=0.30s,通过第二个光电门的时间为△t2=0.10s,滑块经过第一个光电门的速度大小0.10 m/s;滑块经过第二个光电门的速度大小0.30 m/s.若遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为△t=3.0s.则滑块的加速度大小0.05m/s2,两个光电门之间的距离大小是0.8 m.(结果保留一位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.如图所示,质量为$\frac{\sqrt{3}}{3}$kg的A物体与质量为1kg的B物体,用质量不计的细绳连接后,放在半径为R的光滑圆柱上处于静止状态,已知AB弧长 $\frac{πR}{2}$,则OB与竖直方向的夹角为(  )
A.30°B.45°C.60°D.以上答案均不对

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

17.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,底边bc水平,金属线框的质量为m,电阻为R.在金属线框的下方有一水平方向的匀强磁场区域,MN和M′N′是匀强磁场区域的上下边界,并与线框的bc边平行,磁场方向与线框平面垂直.现金属线框从磁场上方某一高度处由静止开始下落,图乙是金属线框由开始下落到完全穿过磁场区域瞬间的速度-时间图象,图象中坐标轴上所标出的字母均为已知量,重力加速度为g,忽略空气阻力.(  )
A.金属矿刚进入磁场时感应电流方向沿adcba方向
B.金属矿的边长为v1t2
C.磁场的磁感应强度为B=$\frac{1}{{v}_{1}({t}_{2}-{t}_{1})}$$\sqrt{\frac{mgR}{{v}_{1}}}$
D.金属框在0~t4时间内产生的热量为2mgv1(t2-t1)+$\frac{1}{2}$m(v22-v32

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

4.如图1所示,两根足够长的平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为α,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m,导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B,金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连.不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g,现闭合开关S,将金属棒由静止释放.

(1)判断金属棒ab中电流的方向;
(2)若电阻箱R2接入电路的阻值为R2=2R1,当金属棒下降高度为h时,速度为v,求此过程中定值电阻R1上产生的焦耳热Q1
(3)当B=0.40T,L=0.50m,α=37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系如图2所示.取g=10m/s2,sin37°=0.60,cos37°=0.80.求定值电阻的阻值R1和金属棒的质量m.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

14.相距为L的两水平导轨电阻不计,搁在其上的两根金属棒ab和cd的质量均为m,电阻均为R,与导轨间的动摩擦因数均为μ,导轨所在区域有垂直导轨平面的磁感应强度为B的匀强磁场,现对ab棒施加一垂直于棒的水平恒力F,当ab匀速运动时,其运动速度为v.
(1)如果cd棒不动,求F的大小及cd所受摩擦力.
(2)如果cd棒滑动,则cb棒稳定运动的速度是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

1.如图所示,两根光滑金属导轨平行放置在倾角为30°的斜面上,导轨宽度为L,导轨下端接有电阻R,两导轨间存在一方向垂直于斜面向上、磁感应强度大小为B的匀强磁场.轻绳一端平行于斜面系在质量为m的金属棒上,另一端通过定滑轮竖直悬吊质量为m0的小木块.第一次将金属棒从PQ位置由静止释放,发现金属棒沿导轨下滑.第二次去掉轻绳,让金属棒从PQ位置由静止释放.已知两次下滑过程中金属棒始终与导轨接触良好,且在金属棒下滑至底端MN前,都已经达到了平衡状态.导轨和金属棒的电阻都忽略不计,已知$\frac{m}{{m}_{0}}$=4,$\frac{mgR}{{B}^{2}{L}^{2}}$=$\sqrt{gh}$(h为PQ位置与MN位置的高度差).求:
(1)金属棒两次运动到MN时的速度大小之比;
(2)金属棒两次运动到MN过程中,电阻R产生的热量之比.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

18.如图所示,在边长为a的正方形区域内有匀强磁场,磁感应强度为B,其方向垂直纸面向外,一个边长也为a的单匝正方形导线框架EFGH正好与上述磁场区域的边界重合,导线框的电阻为R.现使导线框以周期T绕其中心O点在纸面内匀速转动,经过$\frac{T}{8}$导线框转到图中虚线位置,则在这$\frac{T}{8}$时间内(  )
A.顺时针方向转动时,感应电流方向为E→F→G→H→E
B.平均感应电动势大小等于$\frac{8(3-2\sqrt{2}){a}^{2}B}{T}$
C.平均感应电动势大小等于$\frac{16{a}^{2}B}{9T}$
D.通过导线框横截面的电荷量为$\frac{(3-2\sqrt{2}){a}^{2}B}{R}$

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

19.如图所示,固定于水平面上的金属架CDEF处在竖直向下的匀强磁场中,垂直放置的金属棒MN沿框架以速度v向右做匀速运动.t=0时,磁感应强度为B0,此时MN到达的位置使MDEN构成一个边长为l的正方形.
(1)若磁感应强度保持不变,则流过金属棒MN的电流方向为N流向M;
(2)为使金属棒MN中不产生感应电流,从t=0开始,磁感应强度B随时间t变化的关系式为B=$\frac{{B}_{0}^{\;}l}{l+vt}$.

查看答案和解析>>

同步练习册答案