精英家教网 > 高中物理 > 题目详情
4.如图1所示,两根足够长的平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为α,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m,导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B,金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连.不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g,现闭合开关S,将金属棒由静止释放.

(1)判断金属棒ab中电流的方向;
(2)若电阻箱R2接入电路的阻值为R2=2R1,当金属棒下降高度为h时,速度为v,求此过程中定值电阻R1上产生的焦耳热Q1
(3)当B=0.40T,L=0.50m,α=37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系如图2所示.取g=10m/s2,sin37°=0.60,cos37°=0.80.求定值电阻的阻值R1和金属棒的质量m.

分析 (1)金属棒由静止释放沿导轨向下运动切割磁感线,根据右手定制判断感应电流的方向;
(2)以金属棒为研究对象,根据功能关系即可正确解答;
(3)当金属棒的速度达到最大时,有mgsinα=BIL成立,由此写出最大速度vm和电阻R2的函数关系,根据斜率、截距的物理意义即可正确解答.

解答 解:(1)由右手定则,金属棒ab中的电流方向为b到a
(2)由能量守恒,金属棒减小的重力势能等于增加的动能和电路中产生的焦耳热为:
mgh=$\frac{1}{2}$mv2+Q
解得:Q=mgh-$\frac{1}{2}$mv2
因R2=2R1,此过程中定值电阻R1上产生的焦耳热为:
Q1=$\frac{Q}{3}$=$\frac{1}{3}$mgh-$\frac{1}{6}$mv2
(3)设最大速度为v,切割磁感线产生的感应电动势为:E=BLv
由闭合电路的欧姆定律有:I=$\frac{E}{{R}_{1}+{R}_{2}}$
从b端向a端看,金属棒受力如图:
金属棒达到最大速度时满足:
mgα-BIL=0
由以上三式得:v=$\frac{mgsinα}{{B}^{2}{L}^{2}}$R2+$\frac{mgsinα}{{B}^{2}{L}^{2}}{R}_{1}$
由图象可知:斜率为k=$\frac{60-30}{2}$=15m/•Ω,纵截距为v0=30m/s,得到:
$\frac{mgsinα}{{B}^{2}{L}^{2}}{R}_{1}$=v0
$\frac{mgsinα}{{B}^{2}{L}^{2}}=k$
解得:R1=2.0Ω   m=0.1kg
答:(1)金属棒ab中电流的方向为b到a;
(2)此过程中定值电阻R1上产生的焦耳热Q1为$\frac{1}{3}$mgh-$\frac{1}{6}$mv2
(3)定值电阻的阻值R1为2.0Ω,金属棒的质量m为0.1kg.

点评 本题考查电磁感应定律与电路和受力分析的结合,要注意明确电磁感应问题经常与电路、受力分析、功能关系等知识相结合的题目,本题难点在于第三问,解题的关键是根据物理规律写出两坐标物理量之间的函数关系.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

1.如图所示,左端固定一处于原长的轻质弹簧的光滑平台,半径R=0.25m的光滑圆弧轨道ABC,O为圆弧轨道ABC的圆心,B点为圆弧轨道的最低点,C点在B点的正上方,半径OA与OB的夹角为53°.现将一个质量m=0.5kg的物体(视为质点)缓慢推动压缩弹簧至D点后释放,物体离开弹簧后从A点左侧高为h=0.8m处的P点水平抛出,恰从A点沿切线方向进入圆弧轨道,重力加速度g=10m/s2,sin53°=0.8,cos53°=0.6.求:
(1)物体做平抛运动的时间及从P点水平抛出的速度v0的大小
(2)释放时弹簧具有的弹性势能Ep
(3)在C点轨道对物体的支持力大小.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

2.一个电动机线圈电阻是0.4Ω,当它两端所加的电压为220V时,通过的电流是5A,
①这台电动机的热功率是多少?
②这台电动机的机械功率是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

12.如图所示,水平放置的光滑平行金属导轨处于竖直向下的匀强磁场中,磁感应强度B=1.0×10-2T,导轨间距L=2m,导轨左端串接一电阻为R=2Ω的灯泡,其它部分电阻均不计,金属棒MN垂直于导轨,并与灯泡构成一闭合电路,当金属棒MN 在水平向右的恒力F作用下以v=10m/s的速度向右匀速运动时,求:
(1)流过金属棒MN的感应电流的方向如何?画出等效电路图;
(2)感应电流的大小;
(3)恒力F的大小和方向.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

19.如图所示,光滑固定导轨abc与fed相距l=0.1m,其中ab、fe段是倾角θ=60°的直轨道,bc、ed段是半径r=0.6m的圆弧轨道且与ab、fe相切,轨道末端c、d点切线与一放置在水平地面上、质量M=2kg、长为L=4m的木板上表面平滑连接.在abef间有垂直于轨道平面向下、B=10$\sqrt{ST}$的匀强磁场,定值电阻R=1Ω.把质量为m=1kg、电阻不计的金属杆从距b、e高h=1m的导轨上静止释放,杆在直轨道上先加速后匀速下滑.如果杆与木板间摩擦因数μ=0.2,木板与地面之间的动摩擦因数μ1=0.05,取g=10m/s2,忽略杆的转动,求:
(1)杆运动到cd时对轨道的压力F大小及杆由静止下滑到cd的过程中R上产生的焦耳热Q;
(2)杆最后离圆弧轨道末端c、d点的距离x.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

9.如图所示,MN、PQ为足够长的平行导轨,间距L=0.5m.导轨平面与水平面间的夹角θ=37°.NQ⊥MN,NQ间连接有一个R=3Ω的电阻.有一匀强磁场垂直于导轨平面,磁感应强度为B=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,金属棒的电阻r=2Ω,其余部分电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行.已知金属棒与导轨间的动摩擦因数μ=0.5,当金属棒滑行至cd处时速度大小开始保持不变,cd 距离NQ为s=2m.试解答以下问题:(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)金属棒达到稳定时的速度是多大?
(2)从静止开始直到达到稳定速度的过程中,电阻R上产生的热量是多少?
(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t=1s时磁感应强度应为多大?

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

16.甲、乙两物体(均可视为质点)从同一位置出发,它们的运动速度-时间图象如图中实现(甲)和虚线(乙)所示.图象上各点的坐标如下:A(5,5)、B(14,5)C(18,12)D(20,0)、E(22,-12).下列说法正确的是(  )
A.t=5s时甲追上了乙
B.t=20s时甲的加速度反向
C.在前22s内,甲的加速度最大为6m/s2
D.在前22s内,t=10s时甲追上乙

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

13.如图,固定在水平桌面上的光滑金属导轨cd、eg处于方向竖直向下的匀强磁场中,金属杆ab与导轨接触良好.在两根导轨的端点d、e之间连接一电阻,其它部分电阻忽略不计.现用一水平向右的恒力F作用在金属杆ab上,使金属杆由静止开始向右沿导轨滑动,滑动中杆ab始终垂直于导轨.金属杆受到的安培力用F表示,则下列说法正确的是(  )
A.金属杆ab做匀加速直线运动
B.金属杆ab运动过程中回路中有顺时针方向的电流
C.金属杆ab所受到的F安先不断增大,后保持不变
D.金属杆ab克服安培力做功的功率与时间的平方成正比

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

14.如图所示,足够长的U形光滑金属导轨所在平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,磁感应强度大小为B的匀强磁场方向垂直导轨所在平面斜向上,导轨电阻不计,金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,棒ab接入电路的电阻为R,当流过棒ab某一横截面的电荷量为q时,棒的速度大小为v,则金属棒ab在此下滑过程中(  )
A.受到的安培力方向水平向右
B.下滑位移大小为$\frac{qR}{BL}$
C.运动的加速度大小为gsinθ
D.产生的焦耳热为金属棒重力势能的减小量

查看答案和解析>>

同步练习册答案