【题目】如图所示,间距为L=1m的两条足够长的平行金属导轨与水平面的夹角为θ=37°,底端用电阻为R=0.8Ω的导体MN相连接,导轨电阻忽略不计.磁感应强度为B=1T的匀强磁场与导轨平面垂直,磁场区域上下边界距离为d=0.85m,下边界aa′和导轨底端相距为3d.一根质量为m=1kg、电阻为r=0.2Ω的导体棒放在导轨底端,与导轨垂直且接触良好,并以初速度v0 = 10m/s沿斜面向上运动,到达磁场上边界bb′时,恰好速度为零.已知导轨与棒之间的动摩擦因数为μ=0.5,g=10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)导体棒通过磁场过程中产生的焦耳热;
(2)导体棒从进入磁场到达上边界所用的时间和回路中产生的感应电流的有效值;
(3)微观上导体中的电子克服因碰撞产生的阻力做功,宏观上表现为产生焦耳热.试从微观角度推导:当棒运动到磁场中某一位置时(感应电流为I),其电阻的发热功率为P热 =I2r(推导过程用字母表示)
【答案】(1)Q=16J (2) t=0.615s 故I=A5A (3)见解析
【解析】试题分析:(1)根据能量守恒定律即可求解产生的热量;(2)根据动能定理求出到达上边界的速度,根据动量定理求解所用的时间,根据求出电流;(3)根据瞬时功率的表达式和电流的微观表达式进行分析。
(1)这一过程中,棒的动能转化为重力势能和摩擦生热以及焦耳热Q
由能量守恒得:
解得:
代入数据,解得Q=16J
(2) 棒从开始到运动到磁场边界,由动能定理得:
解得
在棒向上通过磁场的过程中,选沿斜面向下为正,由动量定理得:
又,
解得t=0.615s
又
故A
(3)设导体棒中单位体积的电子数为n,导体棒的横截面积为S
则导体棒中的总电子数
当棒运动到磁场中某一位置时,设电子相对导线定向移动的速率为
则导体棒中所有电子克服阻力做功的功率
当棒运动到磁场中某一位置时,设棒的速度大小为,棒两端电压为U。在棒运动到磁场中某一位置时的极短时间内,可认为电流不变,电子相对导线定向移动的速率为不变,则棒中某个电子受力在这一瞬时受力平衡,故受的阻力
又
导体棒中所有电子克服阻力做功的功率,等于棒中电阻的发热功率,即
联立得:
故
科目:高中物理 来源: 题型:
【题目】如图所示,边长为L、匝数为N,电阻不计的正方形线圈abcd在磁感应强度为B的匀强磁场中绕转轴OO′转动,轴OO′垂直于磁感线,在线圈外接一含有理想变压器的电路,变压器原、副线圈的匝数分别为n1和n2.保持线圈以恒定角速度ω转动,下列判断正确的( )
A. 在图示位置时线框中磁通量为零,感应电动势最大
B. 当可变电阻R的滑片P向上滑动时,电压表V2的示数变大
C. 电压表V1示数等于NBωL2
D. 变压器的输入与输出功率之比为1:1
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,间距为L的光滑平行金属导轨弯成“∠”形,底部导轨面水平,倾斜部分与水平面成θ角,导轨上端与阻值为R的固定电阻相连,整个装置处于磁感应强度方向竖直向上、大小为B的匀强磁场中,导体棒ab和cd均垂直于导轨放置,且与导轨间接触良好。两导体棒的电阻值均为R,其余部分电阻不计。当导体棒cd沿底部导轨向右以速度v匀速滑动时,导体棒ab恰好在倾斜导轨上处于静止状态,导体棒ab的重力为mg,则
A. 导体棒cd两端电压为BLv
B. t时间内通过导体棒cd横截面的电荷量为
C. 导体棒ab所受安培力为mgtanθ
D. cd棒克服安培力做功的功率为
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,半径为L1=2 m的金属圆环内上、下半圆各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1=T。长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端沿逆时针方向匀速转动,角速度为ω=rad/s。通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1=R,滑片P位于R2的正中央,R2的总阻值为4R),图中的平行板长度为L2=2 m,宽度为d=2 m.图示位置为计时起点,在平行板左边缘中央处刚好有一带电粒子以初速度v0=0.5 m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2,左边界为图中的虚线位置,右侧及上下范围均足够大。(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射的影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力)求:
(1)在0~4 s内,平行板间的电势差UMN;
(2)带电粒子飞出电场时的速度;
(3)在上述前提下若粒子离开磁场后不会第二次进入电场,则磁感应强度B2应满足的条件。
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】发光二极管,也就是LED,是一种固态的半导体器件,它可以直接把电能转化为光能.LED的核心是一个半导体晶片。半导体晶片由两部分组成,一部分是P型半导体,空穴浓度高,另一部分是N型半导体,自由电子浓度高。这两种半导体连接起来,它们之间就形成一个“P-N结”.当电流通过晶片时,电子就会被推向P区,在P区里电子跟空穴复合,以光子的形式发出能量,就发光了.不同的半导体材料中电子和空穴所处的能量状态不同,电子和空穴复合时释放出的能量也不同。下列说法正确的是( )
A. 发光二极管的发光原理与普通白炽灯的发光原理相同
B. 发光二极管的发光原理与普通日光灯的发光原理相同
C. 电子和空穴复合时释放出的光子能量越大,则发出光的波长越短
D. 红光发光二极管发出红光的频率比蓝光发光二极管发出蓝光的频率大
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图,正方形导线框abcd的边长为L=10cm,线框平面位于竖直平面内,上下两边处于水平状态.当它从某高处落下时通过一匀强磁场,磁场方向垂直于线框平面,线框的ab边刚进入磁场时,由于安培力的作用使得线框恰能匀速运动.已知磁场的宽度h=4L,线框刚进入磁场时的速度v0=2.5m/s.那么若以向下为力的正方向,则线框通过磁场区域过程中所受安培力的图象可能是以下四图中的( )
A. B.
C. D.
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】在匀强磁场中有一不计电阻的矩形线圈,绕垂直磁场的轴匀速转动,产生如图甲所示的正弦交流电,把该交流电接在图乙中理想变压器的A、B两端,电压表和电流表均为理想电表,Rt为热敏电阻(温度升高时其电阻减小),R为定值电阻。下列说法正确的是
A. 变压器原线圈两端电压的瞬时表达式为u=36sin50πt(V)
B. 在t=0.01s时,穿过该矩形线圈的磁通量的变化率为零
C. Rt处温度升高时,由于变压器线圈匝数比不变,所以电压表V1、V2的比值不变
D. Rt处温度升高时,电流表的示数变小,变压器输入功率变小
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】法拉第发明了世界上第一台发电机——法拉第圆盘发电机,原理如图所示。铜质圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固定一个带摇柄的转轴,边缘和转轴处各有一个铜电刷与其紧贴,用导线将电刷与电阻R连接起来形成回路,其他电阻均不计。转动摇柄,使圆盘如图示方向匀速转动。已知匀强磁场的磁感应强度为B,圆盘半径为r,电阻的功率为P。则
A. 圆盘转动的角速度为,流过电阻R 的电流方向为从c到d
B. 圆盘转动的角速度为,流过电阻R 的电流方向为从d到c
C. 圆盘转动的角速度为,流过电阻R 的电流方向为从c到d
D. 圆盘转动的角速度为,流过电阻R 的电流方向为从d到c
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】飞镖运动于十五世纪兴起于英格兰,二十世纪初,成为人们日常休闲的必备活动。一般打飞镖的靶上共标有10环,第10环的半径最小。现有一靶的第10环的半径为1cm,第9环的半径为2cm……以此类推,若靶的半径为10cm,在进行飞镖训练时目,当人离靶的距离为5m,将飞镖对准第10环中心以水平速度v投出,g取10m/s2。则下列说法正确的是( )
A. 当v≥50m/s时,飞镖将射中第8环线以内
B. 当v=50m/s时,飞镖将射中第6环线
C. 若要击中第10环的线内,飞镖的速度v至少为50 m/s
D. 若要击中靶子,飞镖的速度v至少为50 m/s
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com