精英家教网 > 高中物理 > 题目详情
20.如图所示A、B两小球质量分别为m、2m、A、B间有一被压缩了的弹簧以及一根细线相连,水平面光滑,已知弹簧弹力为F,当剪断细线瞬间两小球的加速度大小分别为aA=$\frac{F}{m}$,aB=$\frac{F}{2m}$,方向分别为aA向水平向左,aB向水平向右.

分析 弹簧的弹力不能突变,根据小球的受力情况应用牛顿第二定律可以求出小球的加速度.

解答 解:弹簧的弹力不能突变,剪断细线瞬间,两球受到的合力都是F,
由牛顿第二定律得:aA=$\frac{F}{m}$,方向:水平向左;aB=$\frac{F}{2m}$,方向:水平向右.
故答案为:$\frac{F}{m}$;$\frac{F}{2m}$;水平向左;水平向右.

点评 本题考查了求加速度,求出小球受到的合力,应用牛顿第二定律可以解题;知道弹簧的弹力不能突变是解题的前提与关键.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

10.一物体做自由落体运动,从开始运动时计时,求:
(1)第3s末的瞬时速度是多少?方向如何?
(2)前3s内的位移多大?
(3)前5s内的平均速度是多大?(g=10m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

11.在磁感应强度为0.5T的匀强磁场中,放置一根与磁场方向垂直的长度为0.4m的通电直导线,导线中电流为1A,则该导线所受安培力大小为0.2N;若让直导线与磁场方向平行,则该导线所受的安培力大小为0N.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

8.如图所示为圆柱形区域的横截面.在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射时,穿过此区域的时间为t;若该区域加垂直该区域的匀强磁场,磁感应强度为B,带电粒子仍以同一初速度沿截面直径入射,粒子飞出此区域时,速度方向偏转了$\frac{π}{3}$,根据上述条件可求得的物理量为(  )
A.带电粒子在圆柱形区域有磁场时的运动时间
B.带电粒子在磁场中运动的半径
C.带电粒子在磁场中运动的周期
D.带电粒子的比荷

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.将电量为-4×10-6C的电荷沿用一条电场线由A点移到B点克服电场力做功2.4×10-5J,再由B点移到C点电场力做功1.2×10-5J,求:
(1)电荷从A到B电势能变化了多少?
(2)电荷从B到C,UBC=?
(3)若ϕB=0,则ϕA=?ϕC=?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.针对目前难以处理的轻质油和化工原料的海洋油污染,中科院电工研究所电磁推进组提出了磁流体海洋浮油回收新技术,于2004年成功研制了海洋浮油回收试验船(如图甲),船体结构如图乙所示,试验船的俯视图如图丙所示,MMlN1N区域中宽L1=4cm,长L2=16$\sqrt{39}$cm,通道侧面NNl、MMl用金属板制成,并分别与电源的正、负极相接,区域内有竖直向上的磁感强度B=1T的匀强磁场.当油污海水进入高×宽=3cm×4cm的通道后,水平方向的电流通过海水,海水在安培力作用下加速,和油发生摩擦起电,使上面的浮油层带正电,并在库仑力作用下变成直径0.5mm左右小油珠.油珠在横向的洛仑兹力作用下,逐渐向某一侧面运动,海水在船尾的出口被喷出,油通过N1处的油污通道流入油污收集箱而被排出.当船速为v0=8m/s,电流为I=10A时,油污的回收率(回收到的油与从入口进入的油的比值)恰好达到l 00%.假设浮油通过磁场边界MN前已成为带电小油珠,表面油层中的电场力、油珠之间的相互作用力、海水对油层的带动均可忽略,油层在海面上厚度均匀.试完成下列问题:

(1)判断海水所受的安培力的方向,并求出安培力大小.
(2)船速为v0=8m/s,电流为I=10A时,油珠的比荷q/m为多少?
(3)若小油珠的比荷只与电流的平方根成正比,则当船速达到v=16m/s,电流仍为I=10A时,油污的回收率为多少?若油污的回收率要达到l00%,则电流至少要多少?(已知$\sqrt{624}$≈24.98)

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

10.如图所示,两根等高光滑的四分之一圆弧形轨道与一足够长水平轨道相连,圆弧的半径为R0、轨道间距为L1=1m,轨道电阻不计.水平轨道处在竖直向上的匀强磁场中,磁感应强度为B1=1T,圆弧轨道处于圆心轴线上均匀向外辐射状的磁场中,如图所示.在轨道上有两长度稍大于L1、质量均为m=2kg、阻值均为R=0.5Ω的金属棒a、b,金属棒b通过跨过定滑轮的绝缘细线与一质量为M=1kg、边长为L2=0.2m、电阻r=0.05Ω的正方形金属线框相连.金属棒a从轨道最高处开始,在外力作用下以速度v0=5m/s沿轨道做匀速圆周运动到最低点MN处,在这一过程中金属棒b恰好保持静止.当金属棒a到达最低点MN处被卡住,此后金属线框开始下落,刚好能匀速进入下方h=1m处的水平匀强磁场B3中,B3=$\sqrt{5}$T.已知磁场高度H>L2.忽略一切摩擦阻力,重力加速度为g=10m/s2.求:
(1)辐射磁场在圆弧处磁感应强度B2的大小;
(2)从金属线框开始下落到进入磁场前,金属棒a上产生的焦耳热Q;
(3)若在线框完全进入磁场时剪断细线,线框在完全离开磁场B3时刚好又达到匀速,已知线框离开磁场过程中产生的焦耳热为Q1=10.875J,则磁场的高低H为多少.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

7.如图(1)所示,两足够长平行光滑的金属导轨MN、PQ相距为0.8m,导轨平面与水平面夹角为α,导轨电阻不计.有一个匀强磁场垂直轨平面斜向上,长为1m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒的质量为0.1kg、与导轨接触端间电阻为1Ω.两金属导轨的上端连接右端电路,电路中R2为一电阻箱.已知灯泡的电阻RL=4Ω,定值电阻R1=2Ω,调节电阻箱使R2=12Ω,重力加速度g=10m/s2.将电键S打开,金属棒由静止释放,1s后闭合电键,如图(2)所示为金属棒的速度随时间变化的图象.求:

(1)斜面倾角α及磁感应强度B的大小;
(2)若金属棒下滑距离为60m时速度恰达到最大,求金属棒由静止开始下滑100m的过程中,整个电路产生的电热;
(3)改变电阻箱R2的值,当R2为何值时,金属棒匀速下滑时R2消耗的功率最大;消耗的最大功率为多少?

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

8.如图所示,一个电子(质量为m)电荷量为e,以初速度v0沿着匀强电场的电场线方向飞入匀强电场,已知匀强电场的场强大小为E,不计重力,问:
(1)电子进入电场的最大距离.
(2)电子进入电场最大距离的一半时的动能.

查看答案和解析>>

同步练习册答案