·ÖÎö £¨1£©ÓÉ»úеÄÜÊØºã¶¨ÂÉÇó³öÎï¿éµ½´ïBµãʱµÄËÙ¶È´óС£®Îï¿é¾¹ýBµãʱ£¬ÓÉÖØÁ¦ºÍ¹ìµÀÖ§³ÖÁ¦µÄºÏÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¹ìµÀ¶ÔËüµÄÖ§³ÖÁ¦£®
£¨2£©Îï¿é»¬ÉÏľ°åºóÏÈ×öÏòÓÒ×öÔȼõËÙÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ·Ö±ðÇó³ö»¬¿éºÍľ°åµÄ¼ÓËÙ¶È£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½µÃµ½Á½ÕßµÄËٶȺÍÎ»ÒÆÓëʱ¼äµÄ¹ØÏµÊ½£®µ±Á½ÕßËÙ¶ÈÏàµÈʱ£¬Îï¿éÏà¶Ôľ°å»¬¶¯µÄ¾àÀë×î´ó£¬ÁªÁ¢Çó½â£®
£¨3£©·ÖÁ½ÖÖÇé¿öÑо¿£º1¡¢Á½ÕßËÙ¶ÈÏàµÈºóÒ»ÆðÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɶÔÕûÌåÇóÒ»ÆðÔ˶¯µÄ¼ÓËÙ¶È£¬µÃµ½¼ÓËٶȵÄÌõ¼þ£¬ÔÙÓÉÏà¶ÔÎ»ÒÆÇóÈÈÁ¿£®2¡¢»¬¿é´Óľ°åµÄ×ó¶Ë»¬Ï£¬ÇóµÃÏà¶ÔÎ»ÒÆ£¬ÔÙÇóÈÈÁ¿£®
½â´ð ½â£º£¨1£©Îï¿éÔÚÔ²»¡ÉÏÔ˶¯Ê±£¬ÓÉ»úеÄÜÊØºãµÃ£º
m1gR=$\frac{1}{2}{m}_{1}{v}_{0}^{2}$
¿ÉµÃ£ºv0=$\sqrt{2gR}$
Îï¿é¾¹ýBµãʱ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
N-m1g=m1$\frac{{v}_{0}^{2}}{R}$
½âµÃ£ºN=3m1g
£¨2£©Îï¿éÔÚľ°åÉÏ»¬¶¯¹ý³ÌÖУ¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½µÃ£º
¶ÔÎï¿é£º-¦Ìm1g=m1a1£¬a1=-¦Ìg£¬¶øv0=$\sqrt{2gR}$
ËÙ¶È£ºv1=v0+a1t=$\sqrt{2gR}$-¦Ìgt
Î»ÒÆ£ºx1=v0t+$\frac{1}{2}$a1t2=$\sqrt{2gR}$t-$\frac{1}{2}$¦Ìgt2£»
¶Ôľ°å£ºF+¦Ìm1g=m0a2£¬a2=$\frac{3¦Ì{m}_{1}g}{{m}_{0}}$
ËÙ¶È£ºv2=a2t=$\frac{3¦Ì{m}_{1}g}{{m}_{0}}$t
Î»ÒÆ£ºx2=$\frac{1}{2}$a2t2=$\frac{3¦Ì{m}_{1}g}{2{m}_{0}}$t2£»
µ±v1=v2ʱÎï¿éÏà¶ÔÓÚľ°åÏòÓÒ»¬ÐÐ×îÔ¶£¬¼´µÃ£º
$\sqrt{2gR}$-¦Ìgt=$\frac{3¦Ì{m}_{1}g}{{m}_{0}}$t
ËùÒÔ t=$\frac{{m}_{0}\sqrt{2gR}}{¦Ì£¨{m}_{0}+3{m}_{1}£©g}$
¹ÊÎï¿éÏà¶Ôľ°å»¬¶¯µÄ×î´ó¾àÀë¡÷xmax=x1-x2=$\frac{{m}_{0}R}{¦Ì£¨{m}_{0}+3{m}_{1}£©}$
£¨3£©ËÙ¶ÈÏàͬʱ£¬Èç¹ûÁ½ÕßÒ»ÆðÔ˶¯£¬Éè¼ÓËÙ¶ÈΪa
ÓÉÕûÌ壺a=$\frac{F}{{m}_{0}+{m}_{1}}$=$\frac{2{¦Ìm}_{1}g}{{m}_{0}+{m}_{1}}$
µ±a¡Ü|a1|£¬¼´m0¡Ým1ʱ£¬Îï¿éÓëľ°åÒ»ÆðÏòÓÒÔ˶¯£¬²»ÔÙ·¢ÉúÏà¶Ô»¬¶¯£¬Ôò²úÉúµÄÈÈÁ¿Îª
Q=¦Ìm1g¡÷xmax=$\frac{{m}_{0}{m}_{1}gR}{{m}_{0}+3{m}_{1}}$
µ±a£¾|a1|£¬¼´m0£¼m1ʱ£¬Îï¿éÓëľ°åÈÔÏà¶Ô»¬¶¯£¬Ä¾°åÔ˶¯±ÈÎï¿é¿ì£¬Îï¿é½«Ä¾°åµÄ×ó²à»¬Ï£¬Ôò²úÉúµÄÈÈÁ¿Îª
Q=2¦Ìm1g¡÷xmax=2$\frac{{m}_{0}{m}_{1}gR}{{m}_{0}+3{m}_{1}}$
´ð£º£¨1£©Îï¿é¹ýBµãʱÊܵ½µÄµ¯Á¦ÊÇ3m1g£»
£¨2£©Îï¿éÏà¶Ôľ°å»¬¶¯µÄ×î´ó¾àÀëÊÇ$\frac{{m}_{0}R}{¦Ì£¨{m}_{0}+3{m}_{1}£©}$£»
£¨3£©Îï¿éºÍľ°å¼äĦ²Á²úÉúµÄÈÈÁ¿Îª$\frac{{m}_{0}{m}_{1}gR}{{m}_{0}+3{m}_{1}}$»ò2$\frac{{m}_{0}{m}_{1}gR}{{m}_{0}+3{m}_{1}}$£®
µãÆÀ ±¾ÌâÊ×ÏÈÒª·ÖÎöÎï¿éºÍľ°åµÄÎïÀí¹ý³Ì£¬°ÑÎÕËÙ¶ÈÏàµÈÕâ¸öÁÙ½ç״̬£¬·ÖÎöÎï¿é¿ÉÄܵÄÔ˶¯×´Ì¬Êǹؼü£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½øÐд¦Àí£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÎïÌå×ö×ÔÓÉÂäÌåÔ˶¯Ê±£¬ÎïÌå¶ÔµØÇòûÓÐÁ¦µÄ×÷Óà | |
| B£® | ×öÇúÏßÔ˶¯µÄÎïÌ壬Æä¼ÓËÙ¶È·½ÏòÒ»¶¨ÊDZ仯µÄ | |
| C£® | Ò»Ìú¿é·ÅÔÚ×ÀÃæÉÏ£¬Ìú¿éÊÜÏòÉϵĵ¯Á¦£¬ÊÇÓÉÓÚÌú¿é·¢ÉúÁËÐαä | |
| D£® | Ò»¸öµÆÅÝÓÃÇáÉþÐü¹ÒÔÚÌ컨°åÉÏ£¬µÆÅݶÔÉþµÄÀÁ¦ºÍÉþ¶ÔµÆÅݵÄÀÁ¦ÊÇÒ»¶Ô×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ͼÒÒ½«Í£ÓÚPµãÇ°ÃæÄ³´¦ | B£® | ͼ±û½«Í£ÓÚPµãÇ°ÃæÄ³´¦ | ||
| C£® | ͼÒÒ½«Í£ÓÚPµãºóÃæÄ³´¦ | D£® | ͼ±û½«Í£ÓÚPµã´¦ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
| A£® | ¸ù¾Ý¶¨ÒåʽB=$\frac{F}{IL}$£¬´Å³¡ÖÐijµãµÄ´Å¸ÐÇ¿¶ÈBÓëF³ÉÕý±È£¬ÓëIL³É·´±È | |
| B£® | ´Å¸ÐÇ¿¶ÈBÊÇʸÁ¿£¬·½ÏòÓë°²ÅàÁ¦FµÄ·½ÏòÏàͬ | |
| C£® | ´Å¸ÐÇ¿¶ÈBÊÇʸÁ¿£¬·½ÏòÓëͨ¹ý¸ÃµãµÄ´Å¸ÐÏßµÄÇÐÏß·½ÏòÏàͬ | |
| D£® | ÔÚÈ·¶¨µÄ´Å³¡ÖУ¬Í¬Ò»µãµÄ´Å¸ÐӦǿ¶ÈÊÇÈ·¶¨µÄ£¬²»Í¬µãµÄ´Å¸ÐӦǿ¶È¿ÉÄܲ»Í¬£¬´Å¸ÐÏßÃܵĵط½´Å¸ÐӦǿ¶È´óЩ£¬´Å¸ÐÏßÊèµÄµØ·½´Å¸ÐӦǿ¶ÈСЩ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com