·ÖÎö £¨1£©Ãº¿éÔÚ»¬¶¯Ä¦²ÁÁ¦×÷ÓÃÏÂÏò×ó×öÔȼõËÙÔ˶¯£¬ËÙ¶ÈΪÁãʱµ½´ï×î×ó¶Ë£¬Óɶ¯Äܶ¨ÀíÇóú¿éˮƽÏò×óÔ˶¯µÄ×î´óÎ»ÒÆ£®
£¨2£©Ãº¿éÓë´«ËÍ´ø¸ÕºÃÏà¶Ô¾²Ö¹Ê±Á½ÕßËÙ¶ÈÏàͬ£¬Óɶ¯Äܶ¨ÀíÇó´«ËÍ´ø¶Ôú¿é×öµÄ¹¦W£®
£¨3£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Ëٶȹ«Ê½¡¢Î»Òƹ«Ê½½áºÏÇó³öú¿éÓë´«ËÍ´øµÄÏà¶ÔÎ»ÒÆ£¬¼´ÎªºÚÉ«ºÛ¼£µÄ³¤¶È£®
½â´ð ½â£º£¨1£©Éèú¿éˮƽÏò×óÔ˶¯µÄ×î´óÎ»ÒÆÎªx£®
¸ù¾Ý¶¯Äܶ¨ÀíµÃ
-¦Ìmgx=0-$\frac{1}{2}m{v}_{0}^{2}$
¿ÉµÃ x=$\frac{{v}_{0}^{2}}{2¦Ìg}$
£¨2£©¡¢£¨3£©ÔÚú¿éÏò×óÔ˶¯µÄ¹ý³ÌÖУº
ú¿éÏò×óÔȼõËÙÔ˶¯µÄ¼ÓËÙ¶È´óСΪ a=$\frac{¦Ìmg}{m}$=¦Ì
Ïò×óÔ˶¯µÄʱ¼äΪ t1=$\frac{{v}_{0}}{¦Ìg}$
Èôa0t1¡Üv0£¬Ôòú¿éÓë´«ËÍ´ø¼äµÄÏà¶ÔÎ»ÒÆ´óСΪ¡÷x1=x+$\frac{1}{2}{a}_{0}{t}_{1}^{2}$=$\frac{{v}_{0}^{2}£¨¦Ìg+{a}_{0}£©}{2{¦Ì}^{2}{g}^{2}}$
Èôa0t1£¾v0£¬Ãº¿éÓë´«ËÍ´ø¼äµÄÏà¶ÔÎ»ÒÆ´óСΪ¡÷x2=x+[$\frac{{v}_{0}^{2}}{2{a}_{0}}$+v0£¨t1-$\frac{{v}_{0}}{{a}_{0}}$£©]=$\frac{3{v}_{0}^{2}}{2¦Ìg}$-$\frac{{v}_{0}^{2}}{2{a}_{0}}$£»
ÔÚú¿éÏòÓÒÔ˶¯µÄ¹ý³ÌÖУº
Éèú¿éÏòÓÒ¼ÓËÙ¾Àúʱ¼ät2ºóËÙ¶ÈÓë´«ËÍ´øÏàͬ£®ÔòÓÐ
at2=a0£¨t1+t2£©
¿ÉÄÜÓÐÁ½ÖÖÇé¿ö£º
1¡¢Èôa0t1£¾v0£¬Ãº¿éÏòÓÒÔ˶¯Ê±´«ËÍ´øÒѾÒÔËÙ¶Èv0ÔÈËÙÔ˶¯£¬at2=v0£¬½âµÃ t2=$\frac{{v}_{0}}{a}$=$\frac{{v}_{0}}{¦Ìg}$£¬
ú¿éÓë´«ËÍ´ø¼äµÄÏà¶ÔÎ»ÒÆ´óСΪ¡÷x3=v0t2-$\frac{{v}_{0}}{2}{t}_{2}$=$\frac{{v}_{0}^{2}}{2¦Ìg}$
¹ÊºÚÉ«ºÛ¼£µÄ³¤¶ÈΪ¡÷x¢ñ=¡÷x2+¡÷x3=$\frac{2{v}_{0}^{2}}{¦Ìg}$-$\frac{{v}_{0}^{2}}{2{a}_{0}}$£»
´«ËÍ´ø¶Ôú¿é×öµÄ¹¦ W=$\frac{1}{2}m{v}_{0}^{2}$-$\frac{1}{2}m{v}_{0}^{2}$=0
2¡¢Èôa0t1¡Üv0£¬ÓÖÓÐÁ½ÖÖÇé¿ö£º
¢Ùú¿éÓë´«ËÍ´øÏà¶Ô¾²Ö¹Ê±£¬Ãº¿éµÄËÙ¶ÈСÓÚv0£¬ÓÉ at2=a0£¨t1+t2£©µÃ£º
t2=$\frac{{a}_{0}{v}_{0}}{¦Ìg£¨¦Ìg-{a}_{0}£©}$
´«ËÍ´øÓëú¿é¹²Í¬ËÙ¶È v=$\frac{{a}_{0}{v}_{0}}{¦Ìg-{a}_{0}}$
ú¿éÓë´«ËÍ´ø¼äµÄÏà¶ÔÎ»ÒÆ´óСΪ¡÷x5=v0t2-$\frac{{v}_{0}}{2}{t}_{2}$=$\frac{{v}_{0}^{2}}{2¦Ìg}$-$\frac{{a}_{0}{v}_{0}^{2}}{2£¨¦Ìg-{a}_{0}£©}$
¹ÊºÚÉ«ºÛ¼£µÄ³¤¶ÈΪ¡÷x¢ò=¡÷x1+¡÷x5=$\frac{{v}_{0}^{2}£¨¦Ìg+{a}_{0}£©}{2{¦Ì}^{2}{g}^{2}}$+£¨$\frac{{v}_{0}^{2}}{2¦Ìg}$-$\frac{{a}_{0}{v}_{0}^{2}}{2£¨¦Ìg-{a}_{0}£©}$£©
´«ËÍ´ø¶Ôú¿é×öµÄ¹¦ W=$\frac{1}{2}m{v}^{2}$-$\frac{1}{2}m{v}_{0}^{2}$=$\frac{m{v}_{0}^{2}£¨2¦Ìg{a}_{0}-{¦Ì}^{2}{g}^{2}£©}{2£¨¦Ìg-{a}_{0}£©^{2}}$
¢Úú¿éÓë´«ËÍ´øÏà¶Ô¾²Ö¹Ê±£¬Ãº¿éµÄËٶȵÈÓÚv0£¬Ôò
ú¿éÓë´«ËÍ´ø¼äµÄÏà¶ÔÎ»ÒÆ´óСΪ¡÷x3=v0t2-$\frac{{v}_{0}}{2}{t}_{2}$=$\frac{{v}_{0}^{2}}{2¦Ìg}$
¹ÊºÚÉ«ºÛ¼£µÄ³¤¶ÈΪ¡÷x¢ó=¡÷x1+¡÷x3=$\frac{2{v}_{0}^{2}}{¦Ìg}$-$\frac{{v}_{0}^{2}}{2{a}_{0}}$£»
´«ËÍ´ø¶Ôú¿é×öµÄ¹¦ W=$\frac{1}{2}m{v}_{0}^{2}$-$\frac{1}{2}m{v}_{0}^{2}$=0
´ð£º
£¨1£©È¡µØÃæÎª²Î¿¼Ïµ£¬Ãº¿éˮƽÏò×óÔ˶¯µÄ×î´óÎ»ÒÆÎª$\frac{{v}_{0}^{2}}{2¦Ìg}$£»
£¨2£©´Óú¿éÅ×ÉÏ´«ËÍ´øµ½Ãº¿éÓë´«ËÍ´ø¸ÕºÃÏà¶Ô¾²Ö¹µÄ¹ý³ÌÖУ¬´«ËÍ´ø¶Ôú¿é×öµÄ¹¦WΪ0»ò$\frac{m{v}_{0}^{2}£¨2¦Ìg{a}_{0}-{¦Ì}^{2}{g}^{2}£©}{2£¨¦Ìg-{a}_{0}£©^{2}}$£»
£¨3£©ºÚÉ«ºÛ¼£µÄ³¤¶È¿ÉÄÜΪ$\frac{2{v}_{0}^{2}}{¦Ìg}$-$\frac{{v}_{0}^{2}}{2{a}_{0}}$»ò[$\frac{{v}_{0}^{2}£¨¦Ìg+{a}_{0}£©}{2{¦Ì}^{2}{g}^{2}}$+£¨$\frac{{v}_{0}^{2}}{2¦Ìg}$-$\frac{{a}_{0}{v}_{0}^{2}}{2£¨¦Ìg-{a}_{0}£©}$£©]£®
µãÆÀ ±¾ÌâµÄ¹Ø¼üҪú¿é¿ÉÄܵÄÔ˶¯Çé¿ö£¬ÖªµÀºÚÉ«ºÛ¼£µÄ³¤¶ÈµÈÓÚú¿éÓë´«ËÍ´ø¼äµÄÏà¶ÔÎ»ÒÆµÄ´óС£¬Óɶ¯Äܶ¨ÀíºÍÅ£¶ÙÔ˶¯¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½½áºÏÑо¿£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º2016-2017ѧÄêɽ¶«¼ÃÄÏÒ»Öи߶þÀíÉÏѧÆÚÆÚÖп¼ÎïÀíÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
ÈçͼËùʾ£¬PÊǹ̶¨µÄµãµçºÉ£¬ÐéÏßÊÇÒÔPΪԲÐĵÄÁ½¸öÔ²¡£´øµçÁ£×ÓQÔÚPµÄµç³¡ÖÐÔ˶¯£¬Ô˶¯¹ì¼£ÓëÁ½Ô²ÔÚÍ¬Ò»Æ½ÃæÄÚ£¬a¡¢b¡¢cΪ¹ì¼£ÉϵÄÈý¸öµã¡£ÈôQ½öÊÜPµÄµç³¡Á¦×÷Óã¬ÆäÔÚa¡¢b¡¢cµãµÄ¼ÓËÙ¶È´óС·Ö±ðΪaa¡¢ab¡¢ac£¬ËÙ¶È´óС·Ö±ðΪva¡¢vb¡¢vc£¬Ôò£¨ £©
![]()
A£®aa£¾ab£¾ac£¬va£¾vc£¾vb
B£®aa£¾ab£¾ac£¬vb£¾vc£¾va
C£®ab£¾ac£¾aa£¬vb£¾vc£¾va
D£®ab£¾ac£¾aa£¬va£¾vc£¾vb
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º2016-2017ѧÄê½ËÕÌ©ÖÝÖÐѧ¸ß¶þÉÏѧÆÚÆÚÖÐÄ£ÄâÎïÀíÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
A¡¢BÁ½¸öÖʵã·Ö±ð×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÔÚÏàµÈʱ¼äÄÚͨ¹ýµÄ»¡³¤Ö®±È
£¬×ª¹ýµÄÔ²ÐĽÇÖ®±È
£¬ÔòÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ
A£®ËüÃǵÄÏßËÙ¶ÈÖ®±È![]()
B£®ËüÃǵĽÇËÙ¶ÈÖ®±È![]()
C£®ËüÃǵÄÖÜÆÚÖ®±È![]()
D£®ËüÃǵÄÏòÐļÓËÙ¶ÈÖ®±È![]()
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3Ek | B£® | 8Ek | C£® | 4.25Ek | D£® | 2.5Ek |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
| A£® | µç×ÓÑØÊúÖ±·½Ïò´ÓAµãÔ˶¯µ½Cµã£¬µç³¡Á¦×ö¹¦ÎªÁã | |
| B£® | µç×ÓÑØË®Æ½·½Ïò´ÓBµãÔ˶¯µ½Dµã£¬µçÊÆÄÜÏȼõСºóÔö´ó | |
| C£® | OµãµÄ³¡Ç¿´óСΪ$\frac{kQ}{{R}^{2}}$ | |
| D£® | OµãµÄ³¡Ç¿´óСΪ$\frac{\sqrt{3}kQ}{{R}^{2}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
| A£® | ±û×µ×ÅС³µÒÔ0.5m/sµÄËÙ¶ÈÏòÓÒÔÈËÙÔ˶¯ | |
| B£® | ±ûÀ×ÅС³µÒÔ0.5m/sµÄËÙ¶ÈÏòÓÒÔÈËÙÔ˶¯ | |
| C£® | ±ûÍÆ×ÅС³µÒÔ0.5m/sµÄËÙ¶ÈÏò×óÔÈËÙÔ˶¯ | |
| D£® | ±ûÍÆ×ÅС³µÓɾ²Ö¹¿ªÊ¼Ïò×óÔ˶¯µÄ˲¼ä |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
| A£® | ¸îµ¶Ô˶¯µÄ¹ì¼£ÊÇÒ»¶ÎÖ±Ïß | |
| B£® | ¸îµ¶Íê³ÉÒ»´ÎÇиîµÄʱ¼äΪ10s | |
| C£® | ¸îµ¶Ô˶¯µÄʵ¼ÊËÙ¶ÈΪ0.05$\sqrt{7}$m/s | |
| D£® | ¸îµ¶Íê³ÉÒ»´ÎÇиîµÄʱ¼äÄÚ£¬²£Á§°åµÄÎ»ÒÆÊÇ1.5m |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com