精英家教网 > 高中物理 > 题目详情
(19分)在竖直平面内存在如图所示的绝缘轨道,一质量为m=0.4kg、带电量为q=+0.4C的小滑块(可视为质点)在外力作用下压缩至离B点0.05m,此时弹性势能=17.25J,弹簧一端固定在底端,与小滑块不相连,弹簧原长为2.05m,轨道与滑块间的动摩擦因数.某时刻撤去外力,经过一段时间弹簧恢复至原长,再经过1.8s,同时施加电场和磁场,电场平行于纸面,且垂直x轴向上,场强E=10N/C;磁场方向垂直于纸面,且仅存在于第二、三象限内,最终滑块到达N(6m,0)点,方向与水平方向成30º斜向下.(答案可用π表示,
(1)求弹簧完全恢复瞬间,小滑块的速度;
(2)求弹簧原长恢复后1.8s时小滑块所在的位置;
(3)求小滑块在磁场中的运动的时间.
(1)7.5m/s (2)小滑块此时刚好到达坐标原点(3)s  

试题分析:(1)如图所示,弹簧释放到恢复原长经过位移s到达D点,根据能量关系,有:
                         (2分)
其中
解得:=7.5m/s                                            (1分)

(2)此后小滑块沿斜面向上做减速运动,由牛顿第二定律得:
                                 (2分)
解得小滑块的加速度大小为:=7.5                      (1分)
设小滑块运动到E点的速度为0,上升的位移为,则运动时间为:
=                                                  (1分)
上升的位移为:==3.75m                               (1分)
接着小滑块沿斜面下滑,运动时间为:=(1.8-1)s=0.8s
由牛顿第二定律有:               (1分)
解得:=2.5                                          (1分)
则下滑的位移为:=                            (1分)
由图中几何关系知:BD+=BO+                             (1分)
即小滑块此时刚好到达坐标原点.                             (1分)
(3)施加电场和磁场后,由题中数据知:
即小滑块只受洛伦兹力作用,做圆周运动到P(0,m)点,然后做匀速直线运动运动到N(6m,0).
小滑块进入磁场的速度为:=2m/s
洛伦兹力提供向心力:                               (2分)
由图中几何关系知小滑块做圆周运动的半径为:r=2m             (2分)
解得:=1T                                          (1分)
运动周期为:
在磁场中运动的时间为:==s                         (1分)
练习册系列答案
相关习题

科目:高中物理 来源:不详 题型:计算题

(10分)质谱仪原理如图,a为粒子加速器电压为u1b为速度选择器,磁场与电场正交,磁感强度为B1,板间距离为dc为偏转分离器,磁感强度为B2,今有一质量为m,电量为+e的电子(不计重力),经加速后,该离子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,求:
(1)粒子的速率v
(2)速度选择器的电压u2
(3)粒子在B2的磁场中做匀速圆周运动的半径R

查看答案和解析>>

科目:高中物理 来源:不详 题型:计算题

汤姆孙测定电子比荷的实验装置如图甲所示。从阴极K发出的电子束经加速后,以相同速度沿水平中轴线射入极板D1、D2区域,射出后打在光屏上形成光点。在极板D1、D2区域内,若不加电场和磁场,电子将打在P1点;若只加偏转电压U,电子将打在P2点;若同时加上偏转电压U和一个方向垂直于纸面向外、磁感应强度大小为B的匀强磁场(图中未画出),电子又将打在P1点。已知极板长度为L,极板间距为d。忽略电子的重力及电子间的相互作用。
 
(1)求电子射人极板D1、D2区域时的速度大小;
(2)打在P2点的电子,相当于从D1、D2中轴线的中点O’射出,如图乙中的O’ P2所示,已知试推导出电子比荷的表达式;
(3)若两极板间只加题中所述的匀强磁场,电子在极板间的轨迹为一段圆弧,射出后打在P3点。测得圆弧半径为2L、P3与P1间距也为2L,求图乙中P1与P2点的间距a。

查看答案和解析>>

科目:高中物理 来源:不详 题型:计算题

(22分)如图所示,在xOy平面直角坐标系中,直线MN与y轴成30o角,P点的坐标为(,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场。在直角坐标系xOy的第Ⅳ象限区域内存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,与x轴交点为Q,电子束以相同的速度v0从y轴上0y2a的区间垂直于y轴和磁场方向射入磁场。已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力。求:
(1)电子的比荷
(2)电子离开磁场垂直y轴进入电场的位置的范围;
(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?

查看答案和解析>>

科目:高中物理 来源:不详 题型:计算题

(17分)一绝缘“U”型杆由两段相互平行的足够长的竖直直杆PQ、MN和一半径为R的光滑半圆环QAN组成.固定在竖直平面内,其中杆PQ是光滑的,杆MN是粗糙的,整个装置处在水平向右的匀强电池中.在QN连线下方区域足够大的范围内同时存在垂直竖直平面向外的匀强磁场,磁感应强度为.现将一质量为m、带电量为-q(q>0)的小环套在PQ杆上,小环所受的电场力大小为其重力的3倍.(重力加速度为g).求:
(1)若将小环由C点静止释放,刚好能达到N点,求CQ间的距离;
(2)在满足(1)问的条件下,小环第一次通过最低点A时受到圆环的支持力的大小;
(3)若将小环由距Q点8R处静止释放,设小环与MN杆间的动摩擦因数为u,小环所受最大静摩擦力大小相等,求小环在整个运动过程则克服摩擦力所做的功.

查看答案和解析>>

科目:高中物理 来源:不详 题型:计算题

(16分)如图所示,平行板电容器上板M带正电,两板间电压恒为U,极板长为(1+)d,板间距离为2d,在两板间有一圆形匀强磁场区域,磁场边界与两板及右侧边缘线相切,P点是磁场边界与下板N的切点,磁场方向垂直于纸面向里,现有一带电微粒从板的左侧进入磁场,若微粒从两板的正中间以大小为v0水平速度进入板间电场,恰做匀速直线运动,经圆形磁场偏转后打在P点。

(1)判断微粒的带电性质并求其电荷量与质量的比值;
(2)求匀强磁场的磁感应强度B的大小;
(3)若带电微粒从M板左侧边缘沿正对磁场圆心的方向射入板间电场,要使微粒不与两板相碰并从极板左侧射出,求微粒入射速度的大小范围。

查看答案和解析>>

科目:高中物理 来源:不详 题型:计算题

(8分).水平放置的两块平行金属板长L=5.0cm,两板间距d=1.0cm,两板间电压为90v,且上板为正,一个电子沿水平方向以速度v0=2.0×107m/s,从两板中间射入,如图,求:(电子质量m=9.01×10-31kg)

(1)电子飞出电场时沿垂直于板方向偏移的距离是多少?
(2)电子飞出电场时的垂直于板方向的速度是多少?
(3)电子离开电场后,打在屏上的P点,若S=10cm,求OP的长?

查看答案和解析>>

科目:高中物理 来源:不详 题型:计算题

如图所示,水平地面上方有一绝缘弹性竖直薄档板,板高h="3" m,与板等高处有一水平放置的小篮筐,筐口的中心距挡板s="1" m。整个空间存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度B=1T,而匀强电场未在图中画出;质量m=1×10-3kg、电量q=﹣1×10-3C的带电小球(视为质点),自挡板下端的左侧以某一水平速度v0开始向左运动,恰能做匀速圆周运动,若小球与档板相碰后以原速率弹回,且碰撞时间不计,碰撞时电量不变,小球最后都能从筐口的中心处落入筐中。(g取10m/s2,可能会用到三角函数值sin37°=0.6,cos37°=0.8)。试求:

(1)电场强度的大小与方向;
(2)小球运动的可能最大速率;
(3)小球运动的可能最长时间。

查看答案和解析>>

科目:高中物理 来源:不详 题型:计算题

如图所示,aa′、bb′、cc′、dd′为区域Ⅰ、Ⅱ、Ⅲ的竖直边界,三个区域的宽度相同,长度足够大,区域Ⅰ、Ⅲ内分别存在垂直纸面向外和向里的匀强磁场,区域Ⅱ存在竖直向下的匀强电场.一群速率不同的带正电的某种粒子,从边界aa′上的O处,沿着与Oa成30°角的方向射入Ⅰ区.速率小于某一值的粒子在Ⅰ区内运动时间均为t0;速率为v0的粒子在Ⅰ区运动后进入Ⅱ区.已知Ⅰ区的磁感应强度的大小为B,Ⅱ区的电场强度大小为2Bv0,不计粒子重力.求:

(1)该种粒子的比荷
(2)区域Ⅰ的宽度d;
(3)速率为v0的粒子在Ⅱ区内运动的初、末位置间的电势差U;
(4)要使速率为v0的粒子进入Ⅲ区后能返回到Ⅰ区,Ⅲ区的磁感应强度B′的大小范围应为多少?

查看答案和解析>>

同步练习册答案