精英家教网 > 高中物理 > 题目详情
5.如图所示,人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹角为θ时,船的速度为v,此时人的拉力大小为F,则(  )
A.人拉绳行走的速度为vsinθB.人拉绳行走的速度为$\frac{v}{cosθ}$
C.船的加速度为 $\frac{Fcosθ-f}{m}$D.船的加速度为 $\frac{F-f}{m}$

分析 绳子收缩的速度等于人在岸上的速度,连接船的绳子端点既参与了绳子收缩方向上的运动,又参与了绕定滑轮的摆动.根据船的运动速度,结合平行四边形定则求出人拉绳子的速度,及船的加速度.

解答 解:AB、船运动的速度是沿绳子收缩方向的速度和绕定滑轮的摆动速度的合速度.如右上图所示根据平行四边形定则有,v=vcosθ.故A、B错误.
CD、对小船受力分析,如左下图所示,则有Fcosθ-f=ma,因此船的加速度大小为a=$\frac{Fcosθ-f}{m}$,故C正确,D错误;

故选:C.

点评 解决本题的关键知道船运动的速度是沿绳子收缩方向的速度和绕定滑轮的摆动速度的合速度,并掌握受力分析与理解牛顿第二定律.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

12.如图所示,两个木块A、B叠放在水平桌面上,用水平力F1=12N向右拉木块A,同时用水平力F2=8N向左拉木块B,两个木块都静止不动.试求木块A、B所受的静摩擦力.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

16.如图所示,某同学用插针法测定一半圆形玻璃砖的折射率.在平铺的白纸上垂直纸面插大头针P1、P2确定入射光线,并让入射光线过圆心O,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针P3,使P3挡住P1、P2的像,连接O P3.图中MN为分界面,虚线半圆与玻璃砖对称,B、C分别是入射光线、折射光线与圆的交点,AB、CD均垂直于法线并分别交法线于A、D点.
(1)设AB的长度为a,AO的长度为b,CD的长度为m,DO的长度为n,为较方便地表示出玻璃砖的折射率,需用刻度尺测量a和m,则玻璃砖的折射率可表示为$\frac{a}{m}$.
(2)该同学在插大头针P3前不小心将玻璃砖以O为圆心顺时针转过一小角度,由此测得玻璃砖的折射率将偏大(填“偏大”、“偏小”或“不变”).

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

13.如图所示,经过专业训练的杂技运动员进行爬杆表演,运动员先爬上8m高的固定竖直金属杆,然后双腿夹紧金属杆倒立,头顶离地面7m高,运动员通过双腿对金属杆施加不同的压力来控制身体的运动情况.首先,运动员匀加速下滑3m,速度达到 4m/s,然后匀减速下滑,当运动员头项刚要接触地面时,速度刚好减到零,设运动员质量为50kg.
(1)运动员匀加速下滑时加速度大小;
(2)运动员匀减速下滑时所受摩擦力的大小;
(3)求完成加减速全程运动所需的总时间.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

20.物体P放在粗糙水平地面上,劲度系数k=300N/m的轻弹簧左端固定在竖直墙壁上,右端固定在质量为m=1kg的物体P上,弹簧水平,如图所示.开始t=0时弹簧为原长,P从此刻开始受到与地面成θ=37°的拉力F作用而向右做加速度a=1m/s2的匀加速运动,某时刻t=t0时F=10N,弹簧弹力FT=6N,取sin37°=0.6、cos37°=0.8,重力加速度g=10m/s2.求:
(1)t=t0时P的速度;
(2)物体与地面间的动摩擦因数μ.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

10.某研究性学习小组利用插针法可以测量半圆形玻璃砖的折射率.实验探究方案如下:在白纸上做一直线MN,并做出它的一条垂线AB,将半圆柱形玻璃砖(底面的圆心为O)放在白纸上,它的直边与直线MN对齐,在垂线AB上插两个大头针P1和P2,然后在半圆柱形玻璃砖的右侧插上适量的大头针,可以确定光线P1P2通过玻璃砖后的光路,从而求出玻璃的折射率.实验中提供的器材除了半圆柱形玻璃砖、木板和大头针外,还有量角器等.
(1)某同学用上述方法测量玻璃的折射率,在他画出的垂线AB上竖直插上了P1、P2两枚大头针,但在半圆形玻璃砖的右侧区域内,不管眼睛在何处,都无法透过玻璃砖同时看到P1、P2的像,原因是入射光线AB离圆心较远,在半圆形面发生了全反射.他应采取的措施是沿着MN方向、向M点方向平移玻璃砖.
(2)为了确定光线P1P2通过玻璃砖后的光路,最少应插1枚大头针.
(3)请在半圆柱形玻璃砖的右侧估计所插大头针的可能位置,并用“×”表示,作出光路图.为了计算折射率,应该测量的量(在光路图上标出)有入射角i和折射角r,计算折射率的公式是n=$\frac{sini}{sinγ}$.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

17.用如图所示的浅色水平传送带AB和斜面BC将货物运送到斜面的顶端.AB距离L=11m,传送带始终以v=12m/s匀速顺时针运行.传送带B端靠近倾角θ=37°的斜面底端,斜面底端与传送带的B端之间有一段长度可以不计的小圆弧.在A、C处各有一个机器人,A处机器人每隔t=1.0s将一个质量m=10kg、底部有碳粉的货物箱(可视为质点)轻放在传送带A端,货物箱经传送带和斜面后到达斜面顶端的C点时速度恰好为零,C点处机器人立刻将货物箱搬走.已知斜面BC的长度s=5.0m,传送带与货物箱之间的动摩擦因数μ0=0.55,货物箱由传送带的右端到斜面底端的过程中速度大小损失原来的$\frac{1}{11}$,不计传送带轮的大小,g=10m/s2(sin37°=0.6,cos37°=0.8).求:
(1)斜面与货物箱之间的动摩擦因数μ;
(2)如果C点处的机器人操作失误,未能将第一个到达C点的货物箱搬走而造成与第二个货物箱在斜面上相撞.求两个货物箱在斜面上相撞的位置到C点的距离; (本问结果可以用根式表示)
(3)从第一个货物箱放上传送带A端开始计时,在t0=2s的时间内,货物箱在传送带上留下的痕迹长度.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.如图所示是某中学学生根据回旋加速器原理设计的一个小型粒子加速器的原理示意图,区域Ⅰ和区域Ⅱ存在匀强磁场B1和B2.在宽度为d的区域Ⅲ内存在一个匀强电场,电势差大小为U,通过自动调整两区域间的电势高低可使进入该区域的电势差大小恒为U,通过自动调整两区域间的电势高低可使进入该区域的粒子持续加速.在图中A位置静止释放一个质量为m,带电量为q的正电粒子(重力不计),粒子经过两次电场加速后最终垂直于区域Ⅰ边缘AE射出,一切阻力不计,求:
(1)粒子进入区域Ⅰ和区域Ⅱ的速度之比
(2)区域Ⅰ和区域Ⅱ的磁感应强度之比
(3)已知区域Ⅰ的磁感应强度B1=B0,求从粒子释放到从区域Ⅰ边缘飞出的总时间.

查看答案和解析>>

科目:高中物理 来源: 题型:作图题

15.试画出下面图1中负电荷产生的电场; 画出图2中的A点的电场方向以及放在B点的负电荷所受的电场力方向

查看答案和解析>>

同步练习册答案