科目: 来源: 题型:
【题目】如图所示,固定的光滑平台左侧有一光滑的半圆轨道,轨道半径R=0. 72m。平台上静止着两个滑块A、B,质量分别为
、
,两滑块间夹有少量炸药,平台右侧有一质量M=0. 9kg的小车静止在光滑的水平面上,质量
、可视为质点的滑块C静止在小车的左端,小车上表面与平台的台面等高。点燃炸药后,滑块A恰好能到达半圆轨道的最高点,滑块B冲上小车与滑块C碰后粘在一起,并且恰好没从小车右端滑出。已知滑块B、C与小车上表面间的动摩擦因数均为
,g=10m/s2。
![]()
(1)求炸药爆炸后滑块B的速度大小;
(2)求滑块B、C与小车最终的共同速度的大小;
(3)求小车的长度和滑块B、C在小车上表面上的滑行时间。
查看答案和解析>>
科目: 来源: 题型:
【题目】我国发射的“嫦娥一号”卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16时13分成功撞月。如图为“嫦娥一号”卫星撞月的模拟图,卫星在控制点开始进入撞月轨迹。假设卫星绕月球作圆周运动的轨道半径为r,周期为T,引力常量为G,根据题中信息,以下说法正确的是( )
![]()
A.可以求出月球的质量
B.可以求出“嫦娥一号”的质量
C.可以求出月球对“嫦娥一号”卫星的引力
D.“嫦娥一号”卫星在控制点处应加速
查看答案和解析>>
科目: 来源: 题型:
【题目】已知氘核
的质量为2. 0141u,中子
的质量为1. 0087u,氦核
的质量为3. 0160u,1u相当于931. 5MeV。
(1)写出两个氘核
聚变成氦核
的核反应方程;
(2)计算上述核反应中释放的核能为多少MeV(结果保留三位有效数字);
(3)若两个氘核以相同的动能0. 35MeV做对心碰撞即可发生上述反应,且释放的核能全部转化为机械能,则反应后生成的氦核
和中子
的动能各为多少MeV?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图甲所示,一质量m=0. 06kg的金属棒垂直放在倾角
的导轨上,导轨间的距离l=0. 2m,金属棒与导轨间的动摩擦因数
,导轨处于垂直导轨平面向下的有界匀强磁场中,磁场的下边界与金属棒平行且距金属棒的距离x=3m,磁感应强度B随时间t的变化图象如图乙所示,已知
时刻金属棒开始运动,g=10m/s2,sin37°=0. 6,电阻
,其余电阻不计,最大静摩擦力等于滑动摩擦力。
![]()
(1)求t0的值;
(2)从金属棒开始运动的t0时刻起,给金属棒施加一个外力,让金属棒以v=0.1m/s的速度匀速下滑,则磁感应强度B随时间t怎么变化才能保证金属棒中没有电流,试写出接下来磁感应强度B随时间t变化的关系式。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.
![]()
(1)实验中,直接测定小球碰撞前后的速度是不容易的.但是,可以通过仅测量__________(填选项前的符号),间接地解决这个问题.
A.小球开始释放高度h
B.小球抛出点距地面的高度H
C.小球做平抛运动的水平距离(射程)
(2)图中O点是小球抛出点在地面上的垂直投影.实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程.然后,把被碰小球静置于轨道的水平部分,再将入射球从斜轨上S位置静止释放,与小球相碰,并多次重复.接下来要完成的必要步骤是__________(填选项前的符号).
A.用天平测量两个小球的质量m1、m2
B.测量小球m1开始释放高度h
C.测量抛出点距地面的高度H
D.分别找到m1、m2相碰后平均落地点的位置M、N
E.测量平抛射程OM、ON
(3)若两球相碰前后的动量守恒,其表达式可表示为__________(用(2)中测量的量表示);若碰撞是弹性碰撞,那么还应满足的表达式为__________(用(2)中测量的量表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】静止在水平地面上的两小物块A、B,质量分别为mA=1kg、mB=4kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1m,如图所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,A获得动能为EkA=10J,沿与墙壁垂直的方向向右运动。A、B与A初始位置左侧地面之间的动摩擦因数均为μ=0.25,A初始位置与墙壁间的地面光滑。重力加速度取g=10m/s2。A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞的时间极短。
![]()
(1)求弹簧释放后瞬间A、B的速度大小;
(2)求A、B第一次碰撞后瞬间A的速度;
(3)A和B是否发生了第二次碰撞?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,一根原长L=1m的轻弹簧套在足够长的光滑直杆AB上,其下端固定在杆的A端,质量m=2kg的小球也套在杆上且与弹簧的上端相连。小球和杆可以一起绕经过杆A端的竖直轴OO'匀速转动,且杆与水平面间始终保持夹角θ=370已知杆处于静止状态时弹簧的长度变为原长的一半,重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8,所有过程中弹簧均不会超过弹簧的弹性限度。
(1)调整杆的旋转速度,使弹簧恰好恢复原长,求此时小球的线速度大小v;
(2)当小球的线速度大小v1=
m/s时,求该弹簧的长度。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,半径为R,内径很小的光滑半圆管竖直放置,整个装置处在方向竖直向上的匀强电场中,两个质量均为m、带电量相同的带正电小球a、b,以不同的速度进入管内(小球的直径略小于半圆管的内经,且忽略两小球之间的相互作用),a通过最高点A时,对外管壁的压力大小为3、5mg,b通过最高点A时,对内管壁的压力大小0、25mg,已知两小球所受电场力的大小为重力的一半。
![]()
求(1)a、b两球落地点距A点水平距离之比;
(2)a、b两球落地时的动能之比。
【答案】(1)4∶3 (2)8∶3
【解析】
试题分析:(1)以a球为研究对象,设其到达最高点时的速度为
,根据向心力公式有:
![]()
其中![]()
解得:![]()
以b球为研究对象,设其到达最高点时的速度为vb,根据向心力公式有:![]()
其中![]()
解得:![]()
两小球脱离半圆管后均做平抛运动,根据
可得它们的水平位移之比:![]()
(2)两小球做类平抛运动过程中,重力做正功,电场力做负功,根据动能定理有:
对a球:![]()
解得:![]()
对b球:![]()
解得:![]()
则两球落地时的动能之比为:![]()
考点:本题考查静电场、圆周运动和平抛运动,意在考查考生的分析综合能力。
【名师点睛】本题关键是对小球在最高点进行受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,再结合平抛运动规律求解。
【题型】解答题
【结束】
19
【题目】如图所示,倾角θ=37°的光滑且足够长的斜面固定在水平面上,在斜面顶端固定一个轮半径和质量不计的光滑定滑轮D,质量均为m=1kg的物体A和B用一劲度系数k=240N/m的轻弹簧连接,物体B被位于斜面底端且垂直于斜面的挡板P挡住。用一不可伸长的轻绳使物体A跨过定滑轮与质量为M的小环C连接,小环C穿过竖直固定的光滑均匀细杆,当整个系统静止时,环C位于Q处,绳与细杆的夹角α=53°,且物体B对挡板P的压力恰好为零。图中SD水平且长度 为d=0.2m,位置R与位置Q关于位置S对称,轻弹簧和定滑轮右侧的绳均与斜面平行。现 让环C从位置R由静止释放,sin37°=0.6,cos37°=0.8,g取10m/s2。
![]()
求:(1)小环C的质量 M;
(2)小环C通过位置S时的动能 Ek及环从位置R运动到位置S的过程中轻绳对环做的功WT;
(3)小环C运动到位置Q的速率v.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,轻质绝缘细线的上端固定在天花板上,下端拴着一个质量为m的带电小球,细线长为L,当空间中加上一个水平向右的匀强电场时,小球由静止开始从A点向左边摆动,经过B点之后到达最高点C。小球经过B点时,细线与竖直方向夹角为37°角,到达C点时,细线与竖直方向成74°角,sin37°=0.6,cos37°=0.8,当地重力加速度为g,求:
![]()
(1)小球经过B点时,细线的拉力是多少?
(2)若保持电场强度的大小不变,将其方向变为竖直向下,让小球从B点由静止释放,小球经过A点时,细线的拉力是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,一质量为m的小球置于半径为R的光滑竖直圆轨道最低点A处,B为轨道最高点,C、D另一端与小球栓接,已知弹簧的劲度系数为
,原长为L=2R,弹簧始终处于弹性限度内,若给小球一水平初速度v0,已知重力加速度为g,则( )
![]()
A.当v0较小时,小球可能会离开圆轨道
B.若在
则小球会在B、D间脱离圆轨道
C.只要
,小球就能做完整的圆周运动
D.只要小球能做完整圆周运动,则小球与轨道间最大压力与最小压力之差与v0无关
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com