精英家教网 > 试题搜索列表 >最大值为5

最大值为5答案解析

科目:gzsx 来源: 题型:

已知实数x,y满足y=-
9-x2
,则
(x-1)2+(y-2)2
的最大值为
5
+3
5
+3

查看答案和解析>>

科目:gzsx 来源: 题型:

(1)(选修4-4坐标系与参数方程)已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,则|MN|的最大值为
5
+1
5
+1

(2)(选修4-5不等式选讲)设函数f(x)=|x-1|+|x-2|,若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a,b∈R)恒成立,则实数x的取值范围是
1
2
≤x≤
5
2
1
2
≤x≤
5
2

查看答案和解析>>

科目:gzsx 来源: 题型:

已知M(a,b),N(sinωx,cosωx)(ω>0),记f(x)=
OM
ON
(O为坐标原点).若f(x)的最小正周期为2,并且当x=
1
3
时,f(x)的最大值为5.
(1)求函数f(x)的表达式;
(2)对任意的整数n,在区间(n,n+1)内是否存在曲线y=f(x)的对称轴?若存在,求出此对称轴方程;若不存在,说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

14、函数f(x)=x2-4x+5在[0,m]上的最大值为5,最小值为1,则m的取值范围是
[2,4]

查看答案和解析>>

科目:gzsx 来源: 题型:

本题有(I)、(II)、(III)三个选作题,每题7分,请考生任选两题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知a∈R,矩阵P=
02
-10
,Q=
01
a0
,若矩阵PQ对应的变换把直线l1:x-y+4=0变为直线l2:x+y+4=0,求实数a的值.
(2)选修4-4:坐标系与参数方程
在极坐标系中,求圆C:ρ=2上的点P到直线l:ρ(cosθ+
3
sinθ)=6
的距离的最小值.
(3)选修4-5:不等式选讲
已知实数x,y满足x2+4y2=a(a>0),且x+y的最大值为5,求实数a的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

若函数f(x)=-x2+2ax+1+a在区间[0,2]上最大值为5,求实数a的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

如果函数f(x)满足f(-x)=-f(x),f(x)在区间[1,3]上是增函数且最大值为5,那么f(x)在区间[-3,-1]上是(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

6、如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f (x)在区间[-7,-3]上是(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=x2+bx+c(其中b,c为实常数).
(Ⅰ)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为-1,求函数y=f(x)的解析式;
(Ⅱ)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0]?若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

15、(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为
(x-2)2+(y-1)2=5

(2)(不等式选做题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为
5

查看答案和解析>>

科目:gzsx 来源: 题型:

(2013•永州一模)若函数f(x)=
3
sin2x+2cos2x+m在R上的最大值为5,
(1)求m的值;
(2)求y=f(x)的单调递减区间.

查看答案和解析>>

科目:gzsx 来源: 题型:

若函数f(x)=2x3-3x2-12x+a在区间[0,2]上的最大值为5,则a的值是
5
5

查看答案和解析>>

科目:gzsx 来源: 题型:

已知直线l⊥平面α,O为垂足,长方体ABCD-A1B1C1D1中,AD=5,AB=6,AA1=8,A∈l,B1∈α,则OC1的最大值为
5+5
2
5+5
2

查看答案和解析>>

科目:gzsx 来源: 题型:

如果奇函数y=f(x)在区间[4,9]上是增函数,且最小值为5,那么y=f(x)在区间[-9,-4]上(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

已知M(x,y)是区域
x-y+1≥0
x+ay-2≤0
x+4y+1≥0
内任一点,A(1,-2),若z=
OA
OM
的最大值为5,则a=
3
3

查看答案和解析>>

科目:gzsx 来源: 题型:

已知椭圆:
x2
4
+
y2
b2
=1(0<b<2)
,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|
BF2
|+|
AF2
|
的最大值为5,则b的值是(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

已知幂函数f(x)=x(2-k)(1+k)(k∈z)在(0,+∞)上递增.
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(4m-1)x,在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知向量
m
=(1,1)
,向量
n
与向量
m
夹角为
3
4
π
,且
m
n
=-1

(1)若向量
n
与向量
q
=(1,0)的夹角为
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C为△ABC的内角,且A,B,C依次成等差数列,试求|
n
+
p
|的取值范围.
(2)若A、B、C为△ABC的内角,且A,B,C依次成等差数列,A≤B≤C,设f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值为5-2
2
,关于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相异实根,求m的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数y=a-bsin(3x+
π6
)
的最大值为5,最小值为1,则a=
3
3
,b=
±2
±2

查看答案和解析>>

科目:gzsx 来源: 题型:

已知二次函数f(x)满足:
(1)若f(x+1)=2x+f(x),f(0)=1,求f(x)的解析式;
(2)若f(2-x)=f(2+x),f(x)最大值为5,f(0)=1,求f(x)的解析式.

查看答案和解析>>