精英家教网 > 试题搜索列表 >已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交点为E. 若点P为抛物线第四象限部分一动点,求四边形ABPE的面积的最在值和此时点P的坐标。; ABDE的面积.

已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交点为E. 若点P为抛物线第四象限部分一动点,求四边形ABPE的面积的最在值和此时点P的坐标。; ABDE的面积.答案解析

科目:czsx 来源: 题型:

(2013•泸州)如图,在直角坐标系中,点A的坐标为(-2,0),点B的坐标为(1,-
3
),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).
(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.
(1)求抛物线的解析式;
(2)以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3)设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0),对称轴方程是x=3,顶点为B,直线y=kx+m经过A、B两点,它与坐标轴围成的三角形的面积为2,求一次函数y=kx+m和二次函数y=ax2+bx+c的解析式.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•鞍山二模)已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,与x轴另一交点为D,与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式;
(2)如图,连接AC,在抛物线上是否存在点P,使∠ACD+∠ACP=45°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,
①点E在运动过程中四边形OEAF的面积是否发生变化,并说明理由;
②当EF分四边形OEAF的面积为1:2两部分时,求点E的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,-3)两点.
(1)若抛物线的对称轴为直线x=-1,求此抛物线的解析式;
(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;
(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,在平面直角坐标系中,矩形OABC的顶点A的坐标为(4,0),点C的坐标为(0,2),O为坐标原点.设P点在第一象限,以P为圆心,半径为1的⊙P与y轴及矩形OABC的边BC都相切.已知抛物线y=ax2+bx+c(a≠0)经过O、P、A三点.
(1)求抛物线的解析式;
(2)若⊙P与矩形OABC组合得到的图形的面积能被一条直线l平分,求这条直线l的解析式;
(3)若点N在抛物线上,问x轴上是否存在点M,使得以M为圆心的⊙M能与△PAN的三边PA、PN、AN所在直线都相切?若存在,请求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•利川市二模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-4,3)、B(2,0)两点,对称轴为y轴,经过点C(0,-2)的直线l与x轴平行,P(m,n)是抛物线上的动点,O为坐标原点.
(1)求直线AB和抛物线的函数解析式;
(2)以A为圆心,AO为半径画⊙A,判断直线l与⊙A的位置关系,并说明理由;
(3)设PO=d1,点P到直线l的距离为d2,试探索d1、d2间的数量关系;
(4)D点在直线AB上,D点的横坐标为-2,当△PDO的周长最小时,求四边形CODP的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(6,0)和C(0,4 )三个点.
(1)求抛物线的解析式;
(2)设点E(m,n)是抛物线上一个动点,且位于第四象限,四边形OEBF是以OB为对角线的平行四边形,求四边形OEBF的面积S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当四边形OEBF的面积为24时,请判断四边形OEBF是否为菱形?

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a<0;②a+b+c>0;③-
b2a
>0
.把正确结论的序号填在横线上
 

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•安溪县质检)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0)、B(3,0)、C(0,-
32
).
(1)求该抛物线的解析式;
(2)若点Q在抛物线的对称轴上,点P在抛物线上,若以O、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标;
(3)请在抛物线对称轴上求点M,使得∠BMC=90°.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图所示,已知抛物线y=ax2+bx+c(a≠0)经过原点和点(-2,0),则2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直精英家教网线x=-2.
(1)求抛物线与x轴的另一交点A的坐标;
(2)求此抛物线的解析式;
(3)连接AC,BC,若点E是线段AB上的一个动点(与点A,点B)不重合,过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3).
(1)试求出抛物线的解析式;
(2)问:在抛物线的对称轴上是否存在一个点Q,使得△QAC的周长最小,试求出△QAC的周长的最小值,并求出点Q的坐标;
(3)现有一个动点P从抛物线的顶点T出发,在对称轴上以1个单位长度每秒的速度向y轴的正方向运动,试问,经过几秒后,△PAC是等腰三角形?

查看答案和解析>>

科目:czsx 来源: 题型:

(1997•甘肃)已知抛物线y=ax2+bx+c(a≠0)经过A(-2,-3)、B(3,2)两点,且与x轴相交于M、N两点,当以线段MN为直径的圆的面积最小时,求M、N两点的坐标和四边形AMBN的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a<0;②a+b+c>0;③-
b
2a
>0.其中正确的结论有(  )
A、只有①B、①②
C、①③D、①②③

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•本溪一模)如图,已知抛物线y=ax2+bx+3(a≠0)经过A(-1,0),C(3,0)两点.
(1)求抛物线的解析式;
(2)如图,动点D从点O开始沿OB向终点B以每秒1个单位长度的速度运动,动点E从点O开始沿OC向终点C以每秒2个单位长度的速度运动,过点E作GE⊥OC,交CB于点F,交抛物线y=ax2+bx+3于点G,连接BG,DF,点D,E从点O同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t秒(t≥0),在运动过程中,若四边形BDFG为正方形,求t的值;
(3)将(2)中的正方形BDFG沿y轴翻折180°,得到正方形BDF′G′,然后将正方形BDF′G′沿直线BC方向向下平移,设在平移过程中正方形BDF′G′与△BOC重合部分的面积为S,平移的距离为m(0≤m≤3
2
),请直接写出S与m之间的函数关系式.

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)经过(-1,0),(0,-3),(2,-3)三点.
求:(1)抛物线的解析式;
(2)抛物线的对称轴及顶点坐标;
(3)抛物线与坐标轴的交点坐标;
(4)当x取什么值时,y>0.

查看答案和解析>>

科目:czsx 来源:2007年湖北省武汉市黄陂一中分配生素质测试数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系中,矩形OABC的顶点A的坐标为(4,0),点C的坐标为(0,2),O为坐标原点.设P点在第一象限,以P为圆心,半径为1的⊙P与y轴及矩形OABC的边BC都相切.已知抛物线y=ax2+bx+c(a≠0)经过O、P、A三点.
(1)求抛物线的解析式;
(2)若⊙P与矩形OABC组合得到的图形的面积能被一条直线l平分,求这条直线l的解析式;
(3)若点N在抛物线上,问x轴上是否存在点M,使得以M为圆心的⊙M能与△PAN的三边PA、PN、AN所在直线都相切?若存在,请求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>