精英家教网 > 试题搜索列表 >求出Yb与x之间的函数解析式

求出Yb与x之间的函数解析式答案解析

科目:czsx 来源: 题型:

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=
13
时,x的值.

查看答案和解析>>

科目:czsx 来源: 题型:

已知y-2与x成正比例,且当x=1时,y=6.
(1)求出y与x之间的函数解析式;
(2)若点p(a,-1)在这个函数的图象上,求a的值.

查看答案和解析>>

科目:czsx 来源: 题型:

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=时,x的值.

 

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知y-2与x成正比例,且当x=1时,y=6.
(1)求出y与x之间的函数解析式;
(2)若点p(a,-1)在这个函数的图象上,求a的值.

查看答案和解析>>

科目:czsx 来源:2012届湖北省鄂州市八年级上学期期末考试数学试卷 题型:解答题

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=时,x的值.

 

查看答案和解析>>

科目:czsx 来源:期中题 题型:解答题

已知y-2与x成正比例,且当x=1时,y=6。
(1)求出y与x之间的函数解析式;
(2)若点p(a,-1)在这个函数的图象上,求a的值。

查看答案和解析>>

科目:czsx 来源:2010—2011学年湖北省鄂州市八年级上学期期末考试数学试卷 题型:解答题

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=时,x的值.

查看答案和解析>>

科目:czsx 来源: 题型:

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=时,x的值.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

已知y-2与x成正比例,且当x=1时,y=6.
(1)求出y与x之间的函数解析式;
(2)若点p(a,-1)在这个函数的图象上,求a的值.

查看答案和解析>>

科目:czsx 来源:湖北省期末题 题型:解答题

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=时,x的值.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=数学公式时,x的值.

查看答案和解析>>

科目:czsx 来源:2012届湖北省鄂州市八年级上学期期末考试数学试卷 题型:解答题

我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.

1.请填写下表

2.求出yA、yB与x之间的函数解析式;

3.试讨论A、B两村中,哪个村的运费最少;

4.考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.

 

查看答案和解析>>

科目:czsx 来源:2010—2011学年湖北省鄂州市八年级上学期期末考试数学试卷 题型:解答题

我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.
【小题1】请填写下表

【小题2】求出yA、yB与x之间的函数解析式;
【小题3】试讨论A、B两村中,哪个村的运费最少;
【小题4】考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.

查看答案和解析>>

科目:czsx 来源: 题型:

我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.
【小题1】请填写下表

【小题2】求出yA、yB与x之间的函数解析式;
【小题3】试讨论A、B两村中,哪个村的运费最少;
【小题4】考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.

查看答案和解析>>

科目:czsx 来源: 题型:

我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.

1.请填写下表

2.求出yA、yB与x之间的函数解析式;

3.试讨论A、B两村中,哪个村的运费最少;

4.考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.

 

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•奉贤区二模)如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,联结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.

(1)若
ED
=
BE
,求∠F的度数;
(2)设CO=x,EF=y写出y与x之间的函数解析式,并写出定义域;
(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.

查看答案和解析>>

科目:czsx 来源: 题型:

某商场经营一批进价为a元/台的小商品,经调查得到下表中的数据:
精英家教网
(1)请把表中空白处填上适当的数(日销售额=销售价×日销售量,日销售利润=(销售价-进价)×日销售量);
(2)完成(1)后,根据表格中数据发现,表格中的每一对(x,y)的值满足一次函数解析式,请你求出y与x之间的一次函数解析式;
(3)销售利润与销售价满足二次函数关系,请你从表格数据中观察,若想获得最大销售利润,销售价应定在什么范围.

查看答案和解析>>

科目:czsx 来源: 题型:

如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.
(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;
(2)操作2,在图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;
(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

图1是两个正方形纸片ABCD和CEFG叠放在一起,分别以BC边所在直线和BC边的中垂线为坐标轴建立如图所示的坐标系,其中B(-2,0),E(2,
2
),C(2,0),固定正方形ABCD,直线L经过AC两点;将正方形CEFG绕点C顺时针旋转135°得到正方形CE1F1G1
(1)在图2中求点E1的坐标,并直接写出点E1与直线L的位置关系.
(2)利用(1)的结论,将图2中的正方形CE1F1G1在射线CA上沿着CA方向以每秒1个单位的速度平移,平移后的正方形CE1F1G1设为正方形PQRH(图3),当点R移动到点A停止,设正方形PQRH移动的时间为t秒,正方形PQRH与正方形ABCD重叠部分的面积为S,请直接写出S与t之间的函数解析式,并写出函数自变量t的取值范围.
(3)在(2)的条件下,如果S=1时,过BP的直线为m,M点为直线m上的动点,N为直线L上的动点,那么是否存在平行四边形MNBC,如果存在,请求出M点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

已知直线y=2x+1-m与抛物线y=x2-4x+k的一个交点坐标为(1,-1).
(1)分别求出直线与抛物线的函数解析式;
(2)如果在点(1,0)、(4,0)之间有一个动点F(a,0),过点F作y轴的平行线,交直线于点C,交抛物线于点D,求CD的长(用含a的代数式表示);
(3)设抛物线的对称轴与直线交于点B,与x轴交于点A,四边形ABCD能否构成平行四边形?如果能,请求出这个平行四边形的面积;如果不能,请简要说明理由.

查看答案和解析>>