精英家教网 > 试题搜索列表 >求一次函数y=ax+b.y=bx+a

求一次函数y=ax+b.y=bx+a答案解析

科目:czsx 来源: 题型:

一次函数y=ax-b、y=bx-a的图象相交于一点(3,3),求函数y=(a+b)x+ab与x轴的交点坐标.

查看答案和解析>>

科目:czsx 来源:数学教研室 题型:044

如图,一次函数y=ax+b与正比例函数y=bx的图象交于第三象限内的点A,与y轴交于点B(0,-4)且AO=AB,△AOB面积为6,求两函数解析式.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

在函数中,我们把关于x的一次函数y=ax+b与y=bx+a称为一对交换函数,如y=3x+1与与y=x+3是一对交换函数.称函数y=3x+1与是函数y=x+3的交换函数.
(1)求函数y=数学公式x+4与交换函数的图象的交点坐标;
(2)若函数y=数学公式x+b(b为常数)与交换函数的图象及纵轴所围三角形的面积为4,求b的值.

查看答案和解析>>

科目:czsx 来源:2012年浙江省绍兴市六所名校中考数学三模试卷(解析版) 题型:解答题

在函数中,我们把关于x的一次函数y=ax+b与y=bx+a称为一对交换函数,如y=3x+1与与y=x+3是一对交换函数.称函数y=3x+1与是函数y=x+3的交换函数.
(1)求函数y=x+4与交换函数的图象的交点坐标;
(2)若函数y=x+b(b为常数)与交换函数的图象及纵轴所围三角形的面积为4,求b的值.

查看答案和解析>>

科目:czsx 来源: 题型:

在平面直角坐标系中,O为坐标原点,一次函数y=ax+b的图象与二次函数y=ax2+bx的图象交于点A、B.其中a、b均为非零实数.
(1)当a=b=1时,求AB的长;
(2)当a>0时,请用含a、b的代数式表示△AOB的面积;
(3)当点A的横坐标小于点B的横坐标时,过点B作x轴的垂线,垂足为B′.若二次函数y=ax2+bx的图象的顶点在反比例函数y=
a
x
的图象上,请用含a的代数式表示△BB′A的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•绍兴三模)在函数中,我们把关于x的一次函数y=ax+b与y=bx+a称为一对交换函数,如y=3x+1与与y=x+3是一对交换函数.称函数y=3x+1与是函数y=x+3的交换函数.
(1)求函数y=-
2
3
x+4与交换函数的图象的交点坐标;
(2)若函数y=-
2
3
x+b(b为常数)与交换函数的图象及纵轴所围三角形的面积为4,求b的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知一次函数f(x)=ax+b与二次函数g(x)=ax2+bx+c满足a>b>c,且a+b+c=0(a,b,c∈R).
(1)求证:函数y=f(x)与y=g(x)的图象有两个不同的交点A,B;
(2)设A1,B1是A,B两点在x轴上的射影,求线段A1B1长的取值范围;
(3)求证:当x≤-
3
时,f(x)<g(x)恒成立.

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

已知一次函数f(x)=ax+b与二次函数g(x)=ax2+bx+c满足a>b>c,且a+b+c=0(a,b,c∈R).
(1)求证:函数y=f(x)与y=g(x)的图象有两个不同的交点A,B;
(2)设A1,B1是A,B两点在x轴上的射影,求线段A1B1长的取值范围;
(3)求证:当x≤-
3
时,f(x)<g(x)恒成立.

查看答案和解析>>

科目:gzsx 来源:虹口区二模 题型:解答题

已知一次函数f(x)=ax+b,二次函数g(x)=ax2+bx+c,a>b>c,且a+b+c=0
(1)证明:y=f(x)与y=g(x)图象有两个不同的交点A和B
(2)若A1、B1分别是点A、B在x轴上的射影,求线段A1B1长度的取值范围
(3)证明:当x≤-
3
时,恒有f(x)<g(x)

查看答案和解析>>

科目:gzsx 来源:2013年浙江省温州市高一摇篮杯数学竞赛模拟试卷(二)(解析版) 题型:解答题

已知一次函数f(x)=ax+b与二次函数g(x)=ax2+bx+c满足a>b>c,且a+b+c=0(a,b,c∈R).
(1)求证:函数y=f(x)与y=g(x)的图象有两个不同的交点A,B;
(2)设A1,B1是A,B两点在x轴上的射影,求线段A1B1长的取值范围;
(3)求证:当时,f(x)<g(x)恒成立.

查看答案和解析>>

科目:gzsx 来源:2008年上海市虹口区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

已知一次函数f(x)=ax+b,二次函数g(x)=ax2+bx+c,a>b>c,且a+b+c=0
(1)证明:y=f(x)与y=g(x)图象有两个不同的交点A和B
(2)若A1、B1分别是点A、B在x轴上的射影,求线段A1B1长度的取值范围
(3)证明:当x≤-时,恒有f(x)<g(x)

查看答案和解析>>

科目:czsx 来源: 题型:

下面是一个二次函数y=ax+bx+c的自变量x和函数y的对应值表:

x

-3

-2

-1

0

1

2

3

y

12

5

0

-3

-4

-3

0

根据表中提供的信息解答下列各题:

(1)求抛物线与y轴的交点坐标;

(2)抛物线的对称轴是在y轴的右边还是左边?并说明理由

(3)设抛物线与x轴两个交点分别为A、B,顶点为C,求△ABC的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

设二次函数y1=ax2+bx+c(a>b>c)当自变量x=1时函数值为0,一次函数y2=ax+b.
(1)求证:上述两个函数图象必有两个不同的交点;
(2)若二次函数图象与x轴有一交点的横坐标为t,且t为奇数时,求t的值.
(3)设上述两函数图象的交点A、B在x轴上的射影分别为A1,B1,求线段A1B1的长的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2008•虹口区二模)已知一次函数f(x)=ax+b,二次函数g(x)=ax2+bx+c,a>b>c,且a+b+c=0
(1)证明:y=f(x)与y=g(x)图象有两个不同的交点A和B
(2)若A1、B1分别是点A、B在x轴上的射影,求线段A1B1长度的取值范围
(3)证明:当x≤-
3
时,恒有f(x)<g(x)

查看答案和解析>>

科目:czsx 来源: 题型:解答题

设二次函数y1=ax2+bx+c(a>b>c)当自变量x=1时函数值为0,一次函数y2=ax+b.
(1)求证:上述两个函数图象必有两个不同的交点;
(2)若二次函数图象与x轴有一交点的横坐标为t,且t为奇数时,求t的值.
(3)设上述两函数图象的交点A、B在x轴上的射影分别为A1,B1,求线段A1B1的长的取值范围.

查看答案和解析>>

科目:czsx 来源:2010年湖北省黄冈中学高一新生入学数学试卷(解析版) 题型:解答题

设二次函数y1=ax2+bx+c(a>b>c)当自变量x=1时函数值为0,一次函数y2=ax+b.
(1)求证:上述两个函数图象必有两个不同的交点;
(2)若二次函数图象与x轴有一交点的横坐标为t,且t为奇数时,求t的值.
(3)设上述两函数图象的交点A、B在x轴上的射影分别为A1,B1,求线段A1B1的长的取值范围.

查看答案和解析>>

科目:czsx 来源:2013届江苏省无锡市前洲中学九年级下学期期中考试数学试卷(带解析) 题型:解答题

阅读下列材料:
我们知道,一次函数ykxb的图象是一条直线,而ykxb经过恒等变形可化为直线的另一种表达形式:AxBxC=0(ABC是常数,且AB不同时为0).如图1,点Pmn)到直线lAxBxC=0的距离(d)计算公式是:d 

例:求点P(1,2)到直线y x的距离d时,先将y x化为5x-12y-2=0,再由上述距离公式求得d  
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线yx2-4x+5上的一点M(3,2).

(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2012年湖南省郴州市中考数学试卷(解析版) 题型:解答题

阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=

    例:求点P(1,2)到直线y=x-的距离d时,先将y=化为5x-12y-2=0,再由上述距离公式求得d==
    解答下列问题:
    如图2,已知直线y=-与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2012-2013学年江苏省无锡市九年级下学期期中考试数学试卷(解析版) 题型:解答题

阅读下列材料:

我们知道,一次函数ykxb的图象是一条直线,而ykxb经过恒等变形可化为直线的另一种表达形式:AxBxC=0(ABC是常数,且AB不同时为0).如图1,点Pmn)到直线lAxBxC=0的距离(d)计算公式是:d 

例:求点P(1,2)到直线y x的距离d时,先将y x化为5x-12y-2=0,再由上述距离公式求得d  

解答下列问题:

如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线yx2-4x+5上的一点M(3,2).

(1)求点M到直线AB的距离.

(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

 

查看答案和解析>>

科目:czsx 来源:湖南省中考真题 题型:解答题

阅读下列材料:    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=.   
 例:求点P(1,2)到直线y=x﹣的距离d时,先将y=化为5x﹣12y﹣2=0,再由上述距离公式求得d==.    
解答下列问题:    
如图2,已知直线y=﹣与x轴交于点A,与y轴交于点B,
抛物线y=x2﹣4x+5上的一点M(3,2).    
(1)求点M到直线AB的距离.    
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>