精英家教网 > 试题搜索列表 >指数函数求定义域

指数函数求定义域答案解析

科目:gzsx 来源: 题型:

对于f(x)=log
12
(x2-2ax+3)

(1)函数的“定义域为R”和“值域为R”是否是一回事?分别求出实数a的取值范围;
(2)结合“实数a的取何值时f(x)在[-1,+∞)上有意义”与“实数a的取何值时函数的定义域为(-∞,1)∪(3,+∞)”说明求“有意义”问题与求“定义域”问题的区别.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=loga(-x2+4x-3)(a>0,且a≠1)的定义域为M.
(Ⅰ)求定义域M,并写出f(x)的单调递增区间;
(Ⅱ)当x∈M时,求函数g(x)=2x+3-4x的值域.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数y=x
23
,(1)求定义域;(2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知f(x)=loga
1+x1-x
(a>0且a≠1)
(1)求定义域  
(2)求使f(x)>0时,x的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=ln(1+x)+aln(1-x)(a∈R)的图象关于原点对称.
(1)求定义域.
(2)求a的值.
(3)若g(x)=ef(x)-
1-m2+m
有零点,求m的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

直线l:x-ky+2
2
=0
与圆O:x2+y2=4相交于A,B两点,O为原点,△ABO的面积为S.
(1)试将S表示为k的函数S(k),并求定义域;
(2)求S的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

对于定义域为[0,1]的函数f(x)如果满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)-2成立.则称函数f(x)为理想函数.
(1)判断函数g(x)=2x+1 (0≤x≤1)是否为理想函数,并予以证明;
(2)求定义域为[0,1]的理想函数f(x)的最大值和最小值;
(3)某同学发现:当x=
1
2n
(n∈N)时,有f(
1
2n
)≤
1
2n
+2,由此他提出猜想:对一切x∈(0,1],都有f(x)<2x+2,请你根据该同学发现的结论(或其它方法)来判断此猜想是否正确,并说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

关于指数函数,有下列几个命题:
①指数函数的定义域为(0,+∞);
②指数函数的值域是不包括1的;
③指数函数f(x)=2x和f(x)=(
12
x关于y轴对称;
④指数函数都是单调函数.
其中正确的命题有
③④
③④
 (填写正确命题的序号).

查看答案和解析>>

科目:gzsx 来源: 题型:

A、B两城相距100km,在两地之间距A城xkm处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.
(Ⅰ)把月供电总费用y表示成x的函数,并求定义域;
(Ⅱ)核电站建在距A城多远,才能使供电费用最小.

查看答案和解析>>

科目:gzsx 来源: 题型:

求定义域:y=
1
2-|x|
+
x2-1

查看答案和解析>>

科目:gzsx 来源: 题型:

10、已知y=log4(2x+3-x2).
(1)求定义域;
(2)求f(x)的单调区间;
(3)求y的最大值,并求取得最大值的x值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知函数f(x)=ax2+ln(x+1),(a∈R).
(Ⅰ)设函数Y=F(X-1)定义域为D
①求定义域D;
②若函数h(x)=x4+[f(x)-ln(x+1)](x+
1
x
)+cx2+f′(0)在D上有零点,求a2+c2的最小值;
(Ⅱ) 当a=
1
2
时,g(x)=f′(x-1)+bf(x-1)-ab(x-1)2+2a,若对任意的x∈[1,e],都有
2
e
≤g(x)≤2e恒成立,求实数b的取值范围;(注:e为自然对数的底数)
(Ⅲ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在
x≥0
y-x≤0
所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

若函数f(x)=log
2
(1-x2)

(1)求定义域;
(2)求值域;
(3)求单调增区间.

查看答案和解析>>

科目:gzsx 来源: 题型:

1、求定义域时,应注意以下几种情况.
(1)如果f(x)是整式,那么函数的定义域是
R

(2)如果f(x)是分式,那么函数的定义域是使
分母不等于零
的实数的集合;
(3)如果f(x)为二次根式,那么函数的定义域是使
被开方数不小于零
的实数的集合;
(4)如果f(x)为某一数的零次幂,那么函数的定义域是使
底数不为零
的实数的集合.

查看答案和解析>>

科目:gzsx 来源: 题型:

如图:A、B两城相距100km,某天燃气公司计划在两地之间建一天燃气站D 给A、B两城供气.已知D地距A城x km,为保证城市安全,天燃气站距两城市的距离均不得少于10km.已知建设费用y (万元)与A、B两地的供气距离(km)的平方和成正比,当天燃气站D距A城的距离为40km时,建设费用为1300万元.(供气距离指天燃气站距到城市的距离)
(1)把建设费用y(万元)表示成供气距离x (km)的函数,并求定义域;
(2)天燃气供气站建在距A城多远,才能使建设供气费用最小.最小费用是多少?

查看答案和解析>>

科目:gzsx 来源: 题型:

精英家教网 如图,给定两个长度为1的平面向量
OA
OB
,它们的夹角为
3
,点C是以O为圆心的圆弧
AB
上的一个动点,且
OC
=x
OA
+y
OB
(x,y∈
.
R-

(Ⅰ)设∠AOC=θ,写出x,y关于θ的函数解析式并求定义域;
(Ⅱ)求x+y的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

A,B两城相距100km,在两地之间距A城xkm处D地建一核电站给A,B两城供电.为保证城市安全,核电站距城市距离不得少于45km.已知供电费用(元)与供电距离(km)的平方和供电量(亿度)之积成正比,比例系数λ=0.2,若A城供电量为30亿度/月,B城为20亿度/月.
(Ⅰ)把月供电总费用y表示成x的函数,并求定义域;
(Ⅱ)核电站建在距A城多远,才能使供电费用最小,最小费用是多少?

查看答案和解析>>

科目:gzsx 来源: 题型:

已知A、B两城相距100km,在两地之间距A城xkm处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.3.若A城供电量为20亿度/月,B城为10亿度/月.
(1)把月供电总费用y表示成x的函数,并求定义域;
(2)核电站建在距A城多远,才能使供电费用最小.

查看答案和解析>>

科目:gzsx 来源: 题型:

有一海湾,海岸线为近似半个椭圆(如图),椭圆长轴端点为A,B,AB间距离为3km,椭圆焦点为C,D,CD间距离为2km,在C,D处分别有甲,乙两个油井,现准备在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙的8倍.
(1)设乙油井排出的浓度为a(a为常数)度假村P距离甲油井xkm,度假村P受到甲乙两油井的污染程度和记为f(x),求f(x)的表达式并求定义域;
(2)度假村P距离甲油井多少时,甲乙两油井对度假村的废气污染程度和最小?

查看答案和解析>>

科目:gzsx 来源: 题型:

(1)化简:
tan(2π-α)sin(-2π-α)cos(6π-α)
sin(α+
2
)cos(α+
2
)tan(-α)

(2)求定义域:y=lg(3-4sin2x)

查看答案和解析>>