12. 设函数对任意.都有.若时. <0.且. (1)求证为奇函数, (2)在上否有最值?如果有.求出最值,如果没有.说出理由, (3)*设.解关于的不等式. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y)且x>0时,f(x)<0,f(1)=-2.
(1)求证:y=f(x)是奇函数;    
(2)求证:函数y=f(x)在R上为减函数.
(3)试问在-3≤x≤3时,f(x)是否有最值?若有求出最值;若没有,说出理由.

查看答案和解析>>

设函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2
(1)证明f(x)为奇函数.
(2)证明f(x)在R上是减函数.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范围.

查看答案和解析>>

设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a、b的值以及在x=3处的切线方程;
(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

查看答案和解析>>

设函数y=f(x)对任意的实数x,都有f(x)=
12
f(x-1)
,且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.

查看答案和解析>>

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案