已知二次项系为m(m≠0)的二次函数f(x)对任意x∈R,都有f(1-x)=f(1+x)成立.设向量a=(sinx,2),b=)(2sinx,),c=(cos2x,1),d=(1,2). (1)分别求a·b和c·d的取值范围, (2)当x∈[0.π]时.求不等式f(a·b)>f(c·d)的解集. 查看更多

 

题目列表(包括答案和解析)

已知二次项系为m(m≠0)的二次函数f(x)对任意xR,都有f(1-x)=f(1+x)成立,设向量a=(sinx,2),b=(2sinx),c=(cos2x,1),d=(1,2).

(1)分别求a·bc·d的取值范围;

(2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.

查看答案和解析>>

已知二次项系数为m(m≠0)的二次函数f(x)对任意x∈R,都有f(1-x)=f(1+x)成立,设向量a=(sinx,2),b=(2sinx,),c=(cos2x,1),d=(1,2).

(1)分别求a·bc·d的取值范围;

(2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.

查看答案和解析>>

已知二次项系数为1的二次函数,当且仅当x∈(0,2)时f(x)<0,数列的前n项和为,点均在函数的图像上 

(Ⅰ)求数列的通项公式;

(Ⅱ)设是数列的前n项和,求使得对所有都成立的最大正整数m;

查看答案和解析>>

已知二次函数f(x)=x2+bx+c(x∈R),同时满足以下条件:
①存在实数m,使得f(m)=0,且对任意实数x,恒有f(x)≥0成立;
②存在实数k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函数y=f(x)的解析式;
(2)设数列{an}的前n项和为Sn,Sn=f(n),数列{bn}满足关系式,问数列{bn}中是否存在不同的3项,使之成为等比数列?若存在,试写出任意符合条件的3项;若不存在,请说明理由.

查看答案和解析>>

已知二次函数f(x)=x2+bx+c(x∈R),同时满足以下条件:
①存在实数m,使得f(m)=0,且对任意实数x,恒有f(x)≥0成立;
②存在实数k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函数y=f(x)的解析式;
(2)设数列{an}的前n项和为Sn,Sn=f(n),数列{bn}满足关系式bn=an+2+
2
,问数列{bn}中是否存在不同的3项,使之成为等比数列?若存在,试写出任意符合条件的3项;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案