22.已知椭圆的方程是.斜率为的直线与椭圆交于.两点. (Ⅰ)若椭圆的离心率.直线过点.且.求椭圆的方程, (Ⅱ)直线过椭圆的右焦点.设向量.若点在椭圆上.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的两个焦点分别是F1(0,-2
2
),F2(0,2
2
)
,离心率e=
2
2
3

(1)求椭圆的方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M,N,且线段MN中点的横坐标为-
1
2
,求直线l的倾斜角的范围.

查看答案和解析>>

已知椭圆的一个焦点F1(0,-2
2
)
,对应的准线方程为y=-
9
4
2
,且离心率e满足
2
3
,e,
4
3
成等比数列.
(1)求椭圆的方程;
(2)试问是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
1
2
平分?若存在,求出l的倾斜角的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,-1),且其右焦点到直线x-y+2
2
=0
的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为k(k≠0),且过定点Q(0,
3
2
)
的直线l,使l与椭圆交于两个不同的点M、N,且|BM|=|BN|?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1)平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)设直线MA、MB的斜率分别为k1,k2,求证k1+k2=0.

查看答案和解析>>

已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为
2
2
,坐标原点O到过右焦点F且斜率为1的直线的距离为
2
2

(1)求椭圆的方程;
(2)设过右焦点F且与坐标轴不垂直的直线l交椭圆于P、Q两点,在线段OF上是否存在点M(m,0),使得以MP、MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案