函数f(x)=sinx+cos(x+1)的图象相邻的两条对称轴间的距离是 A.3π 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=cos(ωx-
π
2
)
的图象与y=1的图象的两相邻交点间的距离为π,要得到y=f(x)的图象,只需把y=sinx的图象(  )

查看答案和解析>>

已知函数f(x)=cos(ωx-
π
2
)
的图象与y=1的图象的两相邻交点间的距离为π,要得到y=f(x)的图象,只需把y=sinx的图象(  )
A.纵坐标不变,横坐标缩短到原来的一半
B.向左平移
π
2
个单位
C.纵坐标不变,横坐标伸长到原来的2倍
D.向右平移
π
2
个单位

查看答案和解析>>

(文)若数学公式=(数学公式cosωx,sinωx),数学公式=(sinωx,0),其中ω>0,记函数f(x)=(数学公式+数学公式)•数学公式+k.
(1)若函数f(x)的图象中相邻两条对称轴间的距离不小于数学公式,求ω的取值范围;
(2)若函数f(x)的最小正周期为π,且当x∈[-数学公式数学公式]时,函数f(x)的最大值是数学公式,求函数f(x)的解析式,并说明如何由函数y=sinx的图象变换得到函数y=f(x)的图象.

查看答案和解析>>

给出下列命题:
(1)函数f(x)=log3(x2-2x)的单调减区间为(-∞,1);
(2)已知P:|2x-3|>1,q:
1
x2+x-6
>0
,则p是q的必要不充分条件;
(3)命题“?x∈R,sinx≤
1
2
”的否定是:“?x∈R,sinx>”;
(4)已知函数f(x)=
3
sinωx+cosωx(ω>0)
,y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则y=f(x)的单调递增区间是[kπ-
π
3
,kπ+
π
6
],k∈z

(5)用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1);
其中所有正确的个数是(  )

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷