18.已知函数.且..成等差数列. (1)求实数的值, (2)若..是两两不相等的正数.且..成等比数列.试判断与的大小关系.并证明你的结论. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=x3+3bx2+cx+d在(-∞,0)上是增函数,在(0,2)上是减函数,且f(x)=0的一个根为-b
(Ⅰ)求c的值;
(Ⅱ)求证:f(x)=0还有不同于-b的实根x1、x2,且x1、-b、x2成等差数列;
(Ⅲ)若函数f(x)的极大值小于16,求f(1)的取值范围.

查看答案和解析>>

已知函数f(x)=x3+3bx2+cx+d在(﹣∞,0)上是增函数,在(0,2)上是减函数,且f(x)=0的一个根为﹣b
(Ⅰ)求c的值;
(Ⅱ)求证:f(x)=0还有不同于﹣b的实根x1、x2,且x1、-b、x2成等差数列;
(Ⅲ)若函数f(x)的极大值小于16,求f(1)的取值范围.

查看答案和解析>>

已知函数f(x)=x3+3bx2+cx+d在(-∞,0)上是增函数,在(0,2)上是减函数,且f(x)=0的一个根为-b
(Ⅰ)求c的值;
(Ⅱ)求证:f(x)=0还有不同于-b的实根x1、x2,且x1、-b、x2成等差数列;
(Ⅲ)若函数f(x)的极大值小于16,求f(1)的取值范围.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知偶函数y=f(x)满足:当x≥2时,f(x)=(x-2)(a-x),a∈R,当x∈[0,2)时,f(x)=x(2-x)
(1)求当x≤-2时,f(x)的表达式;
(2)试讨论:当实数a、m满足什么条件时,函数g(x)=f(x)-m有4个零点,且这4个零点从小到大依次构成等差数列.

查看答案和解析>>


同步练习册答案