设是由函数上任意两点连线的斜率组成的集合.试写出是区间的一个函数. 填空选择专项训练(6)答卷纸 班级 姓名 查看更多

 

题目列表(包括答案和解析)

已知函数在点处的切线方程为

(Ⅰ)求实数的值;

(Ⅱ)求函数在区间的最大值;

(Ⅲ)设,问是否存在实数,使得函数的图象上任意不同的两点连线的斜率都大于?若存在,求出的取值范围;若不存在,说明理由.(为自然对数的底数,

查看答案和解析>>

已知函数f(x)=x+数学公式+alnx.
(I)求f(x)的单调递增区间;
(II)设a=1,g(x)=f′(x),问是否存在实数k,使得函数g(x)(均的图象上任意不同两点连线的斜率都不小于k?若存在,求k的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x++alnx.
(I)求f(x)的单调递增区间;
(II)设a=1,g(x)=f′(x),问是否存在实数k,使得函数g(x)(均的图象上任意不同两点连线的斜率都不小于k?若存在,求k的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x+
2a2x
+alnx.
(I)求f(x)的单调递增区间;
(II)设a=1,g(x)=f′(x),问是否存在实数k,使得函数g(x)(均的图象上任意不同两点连线的斜率都不小于k?若存在,求k的取值范围;若不存在,说明理由.

查看答案和解析>>

(2009•大连二模)(I)已知函数f(x)=x-
1
x
,x∈(
1
4
1
2
),P(x1,f(x1)),Q(x2,f(x2))是f(x)
图象上的任意两点,且x1<x2
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
f(b)-f(a)
b-a
f(b)-f(a)
b-a
成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).

查看答案和解析>>


同步练习册答案