已知两定圆=12.求经过一定圆圆心且与另一定圆内切的圆的圆心轨迹C的方程, 高考不等式与解析几何专题复习 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,两个焦点分别为F1和F2,椭圆C上一点到F1和F2的距离之和为12.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点B是椭圆C的上顶点,点P,Q是椭圆上;异于点B的两点,且PB⊥QB,求证直线PQ经过y轴上一定点.

查看答案和解析>>

(本小题满分12分)

已知椭圆经过点,离心率

(1)求椭圆的方程

(2)设直线与椭圆交于两点,点关于轴的对称点为。试问:当变化时,直线轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

(2012•茂名二模)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),离心率为
1
2
,椭圆上的动点P到直线l:x=
a2
c
的最小距离为2,延长F2P至Q使得|
F2Q
|=2a,线段F1Q上存在异于F1的点T满足
PT
TF1
=0

(1)求椭圆的方程;
(2)求点T的轨迹C的方程;
(3)求证:过直线l:x=
a2
c
上任意一点必可以作两条直线与T的轨迹C相切,并且过两切点的直线经过定点.

查看答案和解析>>

已知圆锥曲线C上任意一点到两定点F1(-1,0)、F2(1,0)的距离之和为常数,曲线C的离心率e=
1
2

(1)求圆锥曲线C的方程;
(2)设经过点F2的任意一条直线与圆锥曲线C相交于A、B,试证明在x轴上存在一个定点P,使
PA
PB
的值是常数.

查看答案和解析>>


同步练习册答案