动点P的轨迹是曲线C.且满足:点P到F的距离与它到直线:x=-4的距离|PK|之比为常数.又点M(2.)在曲线C上.点N在曲线C内. (1)求曲线C的方程, (2)过作一条直线交曲线C于两点.使得恰好为线段的中点.求直线的方程. 查看更多

 

题目列表(包括答案和解析)

已知为平面内的两个定点,动点P满足|PF1|+|PF2|=4,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)判断原点O关于直线x+y-1=0的对称点R是否在曲线Γ包围的范围内?说明理由.
(注:点在曲线Γ包围的范围内是指点在曲线Γ上或点在曲线Γ包围的封闭图形的内部)
(Ⅲ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且.试探究:直线AB与OC的斜率之积是否为定值?证明你的结论.

查看答案和解析>>

已知A(1,0),B(4,0),动点T(x,y)满足,设动点T的轨迹是曲线C,直线l:y=kx+1与曲线C交于P,Q两点.
(1)求曲线C的方程;
(2)若,求实数k的值;
(3)过点(0,1)作直线l1与l垂直,且直线l1与曲线C交于M,N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

已知A(1,0),B(4,0),动点T(x,y)满足,设动点T的轨迹是曲线C,直线l:y=kx+1与曲线C交于P,Q两点.
(1)求曲线C的方程;
(2)若,求实数k的值;
(3)过点(0,1)作直线l1与l垂直,且直线l1与曲线C交于M,N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

已知两定点A(0,-1),C(0,2),动点M满足∠MCA=2∠MAC.

(Ⅰ)求动点M的轨迹Q的方程;

(Ⅱ)设曲线Q与y轴的交点为B,点B、F是曲线Q上两个不同的动点,且=0,直线AE与BF交于点P(x0,y0),求证:为定值;

(Ⅲ)在第(Ⅱ)问的条件下,求证:过点p′(0,y0)和点E的直线是曲线Q的一条切线.

(Ⅳ)在第(Ⅱ)问的条件下,试问是否存在点E使得(或),若存在,求出此时点E的坐标;若不存在,说明理由.

查看答案和解析>>

已知动圆P与圆数学公式相切,且经过点数学公式
(1)试求动圆的圆心P的轨迹C的方程;
(2)设O为坐标原点,圆D:(x-t)2+y2=t2(t>0),若圆D与曲线C交于关于x轴对称的两点A、B(点A的纵坐标大于0),且数学公式,请求出实数t的值;
(3)在(2)的条件下,点D是圆D的圆心,E、F是圆D上的两动点,满足数学公式,点T是曲线C上的动点,试求数学公式的最小值.

查看答案和解析>>


同步练习册答案