对任意正整数与., 对任意正整数., 对任意正整数与.当时. 求证:恰有一个函数满足上述三个性质.并求出这个函数. 查看更多

 

题目列表(包括答案和解析)

定义数列,且对任意正整数,有.

(1)求数列的通项公式与前项和

(2)问是否存在正整数,使得?若存在,则求出所有的正整数对

;若不存在,则加以证明.

 

查看答案和解析>>

定义数列,且对任意正整数,有.
(1)求数列的通项公式与前项和
(2)问是否存在正整数,使得?若存在,则求出所有的正整数对
;若不存在,则加以证明.

查看答案和解析>>

对于任意的不超过数列的项数),若数列的前项和等于该数列的前项之积,则称该数列为型数列。

(1)若数列是首项型数列,求的值;

(2)证明:任何项数不小于3的递增的正整数列都不是型数列;

(3)若数列型数列,且试求的递推关系,并证明恒成立。

 

查看答案和解析>>

对于任意的不超过数列的项数),若数列的前项和等于该数列的前项之积,则称该数列为型数列。
(1)若数列是首项型数列,求的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列型数列,且试求的递推关系,并证明恒成立。

查看答案和解析>>

对于任意的不超过数列的项数),若数列的前项和等于该数列的前项之积,则称该数列为型数列。
(1)若数列是首项型数列,求的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列型数列,且试求的递推关系,并证明恒成立。

查看答案和解析>>


同步练习册答案