15.锥体体积V可以由底面积S与高h求得:. 已知正三棱锥P-ABC底面边长为2.闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀绾惧鏌曟繛鐐珔缁炬儳鐏濋埞鎴︽偐瀹曞浂鏆¢梺鎼炲€曢悧蹇涘箟閹间焦鍋嬮柛顐g箘閻熴劑姊虹紒妯虹瑨闁诲繑宀告俊鐢稿礋椤栨氨顔婇梺瑙勬儗閸ㄩ亶寮ィ鍐╃厽閹兼番鍨婚崯鏌ユ煙閸戙倖瀚�查看更多

 

题目列表(包括答案和解析)

请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

参考公式:

样本数据的标准差

         其中为样本平均数

柱体体积公式

   

其中为底面面积,为高

 

锥体体积公式

   

其中为底面面积,为高

球的表面积和体积公式

其中为球的半径

 
 


第Ⅰ卷

一、选择题:本大题共12小题,每小题5分,满分60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数的定义域为的定义域为,则

                空集

2.已知复数,则它的共轭复数等于

                                  

3.设变量满足线性约束条件,则目标函数的最小值为

6               7              8                  23

查看答案和解析>>

下列过程中,变量之间是否存在依赖关系?其中哪些是函数关系?

(1)设一长方体盒子高为10 cm,底面是正方形,求这个长方体的体积V(cm3)与底面边长a(cm)的关系;

(2)秀水村的耕地面积是106(m2),求这个村人均占有耕地面积x(m2)与人数n的关系;

(3)设地面气温是20℃,如果每升高1 km,气温下降6℃,求气温t(℃)与高度h(km)的关系.

查看答案和解析>>

(2008•宝山区二模)已知直棱柱ABCD-A1B1C1D1,底面四边形ABCD是一个直角梯形,上底边长BC=2,下底边长AD=6,直角边所在的腰AB=2,体积V=32.求异面直线B1D 与AC1所成的角α(用反三角函数表示).

查看答案和解析>>

已知直棱柱ABCD-A1B1C1D1,底面四边形ABCD是一个直角梯形,上底边长BC=2,下底边长AD=6,直角边所在的腰AB=2,体积V=32.求异面直线B1D 与AC1所成的角α(用反三角函数表示).

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�