已知椭圆上一点M.则M与两个焦点的距离分别为 ,(2)若M到一个焦点的距离为3.则它到相应准线的距离等于 .到另一条准线的距离为 .到另一焦点的距离等于 . 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左右焦点分别为F1,F2
(1)若椭圆C上的点A(1,
3
2
)到F1,F2的距离之和为4,求椭圆C的方程和焦点的坐标;
(2)若M,N是C上关于(0,0)对称的两点,P是C上任意一点,直线PM,PN的斜率都存在,记为kPM,kPN,求证:kPM与kPN之积为定值.

查看答案和解析>>

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)的上、下焦点分别为N、M,点N到上准线的距离为4,且椭圆的离心率为
5
5
,若点P为一动点,满足
MP
MN
=|
PN
|
|
MN
|

(1)求动点P的轨迹C的方程;
(2)过点N作直线l与曲线C交于点A、B,分别以A、B为切点作曲线C的切线,其交点为Q,求
NQ
AB
的值.

查看答案和解析>>

已知椭圆E的中心是坐标原点,焦点在坐标轴上,且椭圆过点A(-2,0),B(2,0),C(1,
32
)三点.
(1)求椭圆E的方程;
(2)若点D为椭圆E上不同于A,B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线l:y=k(x+4),(k≠0)与椭圆E交于M,N两点,点M关于x轴的对称点为P,试问直线PN能否过定点F(-1,0),若是,请证明;若不是,请说明理由.

查看答案和解析>>

已知椭圆的中心在坐标原点,两个顶点在直线x+2y-4=0上,F1是椭圆的左焦点.
(1)求椭圆的标准方程;
(2)设点P是椭圆上的一个动点,求线段PF1的中点M的轨迹方程;
(3)若直线l:y=x+m与椭圆交于点A,B两点,求△ABO面积S的最大值及此时直线l的方程.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)
,直线(m+3)x+(1-2m)y-m-3=0(m∈R)恒过的定点F为椭圆的一个焦点,且椭圆上的点到焦点F的最大距离为3,
(1)求椭圆C的方程;
(2)若直线MN为垂直于x轴的动弦,且M、N均在椭圆C上,定点T(4,0),直线MF与直线NT交于点S.求证:
    ①点S恒在椭圆C上;
    ②求△MST面积的最大值.

查看答案和解析>>


同步练习册答案