题目列表(包括答案和解析)
(本小题满分14分)设函数
(
),
.
(Ⅰ)令
,讨论
的单调性;
(Ⅱ)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(Ⅲ)对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本小题满分14分)
已知:函数
(
),
.
(1)若函数
图象上的点到直线
距离的最小值为
,求
的值;
(2)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数
与
定义域上的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
为函数
与
的“分界线”。设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
、对于函数
与函数
有下列命题:
①无论函数
的图像通过怎样的平移所得的图像对应的函数都不会是奇函数;
②函数
的图像与两坐标轴及其直线
所围成的封闭图形的面积为4;
③方程
有两个根;
④函数
图像上存在一点处的切线斜率小于0;
⑤若函数
在点P处的切线平行于函数
在点Q处的切线,则直线PQ的斜率为
,其中正确的命题是________.(把所有正确命题的序号都填上)
(12分) 设函数
(
),
.
(1) 将函数
图象向右平移一个单位即可得到函数
的图象,试写出
的解析式及值域;
(2) 关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3) 对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本题满分12分) 设函数
(
),
.
(1) 将函数
图象向右平移一个单位即可得到函数
的图象,试写出
的解析式及值域;
(2) 关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3) 对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com