对于函数与方程.课标:对任一函数的零点进行研究.方法基本.简单.易于掌握,课标:求近似解可以无限精确.大纲:画图观察出方程的解的近似值如求方程的近似解. ①设函数与的图象的交点为. 则所在的区间是( ) A. B. C. D. ②已知是实数.函数.如果函数在区间上有零点.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设函数),

(Ⅰ)令,讨论的单调性;

(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)

  已知:函数),

  (1)若函数图象上的点到直线距离的最小值为,求的值;

  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

、对于函数与函数有下列命题:

①无论函数的图像通过怎样的平移所得的图像对应的函数都不会是奇函数;

②函数的图像与两坐标轴及其直线所围成的封闭图形的面积为4;

③方程有两个根;  

④函数图像上存在一点处的切线斜率小于0;

⑤若函数在点P处的切线平行于函数在点Q处的切线,则直线PQ的斜率为,其中正确的命题是________.(把所有正确命题的序号都填上)

 

查看答案和解析>>

(12分) 设函数),

(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;

(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;

(3) 对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分12分) 设函数),

(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;

(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;

(3) 对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

 

查看答案和解析>>


同步练习册答案