(3)由.得. (*) 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)求证:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

.(本题满分14分)
已知函数 (为自然对数的底数).
(1)求的最小值;
(2)不等式的解集为,若求实数的取值范围;
(3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.

查看答案和解析>>

.(本小题满分14分)
已知数列的相邻两项是关于的方程 的两实根,且,记数列的前项和为.
(1)求
(2)求证:数列是等比数列;
(3),问是否存在常数,使得都成立,若存在,
求出的取值范围,若不存在,请说明理由.

查看答案和解析>>

.(本小题满分14分)
如图所示,在直角梯形ABCD中,,曲线段.DE上
任一点到A、B两点的距离之和都相等.
(Ⅰ) 建立适当的直角坐标系,求曲线段DE的方程;
(Ⅱ) 过C能否作-条直线与曲线段DE 相交,且所
得弦以C为中点,如果能,求该弦所在的直线
的方程;若不能,说明理由.

查看答案和解析>>

.(本小题满分14分)

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收 

益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单

位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.现

有两个奖励方案的函数模型:(1);(2).试问这两个函数模

型是否符合该公司要求,并说明理由.

 

 

查看答案和解析>>


同步练习册答案