题目列表(包括答案和解析)
| 3 |
| 3 |
|
| 2 |
| π |
| 4 |
|
| 1 |
| 2a |
| 1 |
| 2b |
| 1 |
| 2c |
| 1 |
| b+c |
| 1 |
| c+a |
| 1 |
| a+b |
(本小题满分16分)
对于函数y=
,x∈(0,
,如果a,b,c是一个三角形的三边长,那么
,
,
也是一个三角形的三边长, 则称函数
为“保三角形函数”.
对于函数y=
,x∈
,
,如果a,b,c是任意的非负实数,都有
,
,
是一个三角形的三边长,则称函数
为“恒三角形函数”.
(1)判断三个函数“
=x,
=
,
=
(定义域均为x∈(0,
)”中,那些是“保三角形函数”?请说明理由;
(2)若函数
=
,x∈
,
是“恒三角形函数”,试求实数k的取值范围;
(3)如果函数
是定义在(0,
上的周期函数,且值域也为(0,
,试证明:
既不是“恒三角形函数”,也不是“保三角形函数”.
(本小题满分16分)
对于函数y=
,x∈(0,
,如果a,b,c是一个三角形的三边长,那么
,
,
也是一个三角形的三边长, 则称函数
为“保三角形函数”.
对于函数y=
,x∈
,
,如果a,b,c是任意的非负实数,都有
,
,
是一个三角形的三边长,则称函数
为“恒三角形函数”.
(1)判断三个函数“
=x,
=
,
=
(定义域均为x∈(0,
)”中,那些是“保三角形函数”?请说明理由;
(2)若函数
=
,x∈
,
是“恒三角形函数”,试求实数k的取值范围;
(3)如果函数
是定义在(0,
上的周期函数,且值域也为(0,
,试证明:
既不是“恒三角形函数”,也不是“保三角形函数”.
设椭圆
的中心和抛物线
的顶点均为原点
,
、
的焦点均在
轴上,过
的焦点F作直线
,与
交于A、B两点,在
、
上各取两个点,将其坐标记录于下表中:![]()
![]()
(1)求
,
的标准方程;
(2)若
与
交于C、D两点,
为
的左焦点,求
的最小值;
(3)点
是
上的两点,且
,求证:
为定值;反之,当
为此定值时,
是否成立?请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com