q:椭圆的一条准线方程是. 查看更多

 

题目列表(包括答案和解析)

椭圆C1的焦点在x轴上,中心是坐标原点O,且与椭圆C2
x2
12
+
y2
4
=1
的离心率相同,长轴长是C2长轴长的一半.A(3,1)为C2上一点,OA交C1于P点,P关于x轴的对称点为Q点,过A作C2的两条互相垂直的动弦AB,AC,分别交C2于B,C两点,如图.

(1)求椭圆C1的标准方程;
(2)求Q点坐标;
(3)求证:B,Q,C三点共线.

查看答案和解析>>

椭圆C1的焦点在x轴上,中心是坐标原点O,且与椭圆C2
x2
12
+
y2
4
=1
的离心率相同,长轴长是C2长轴长的一半.A(3,1)为C2上一点,OA交C1于P点,P关于x轴的对称点为Q点,过A作C2的两条互相垂直的动弦AB,AC,分别交C2于B,C两点,如图.

(1)求椭圆C1的标准方程;
(2)求Q点坐标;
(3)求证:B,Q,C三点共线.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上的一动点P到右焦点的最短距离为2-
2
,且右焦点到右准线的距离等于短半轴的长.
(1)求椭圆C的方程;
(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;
(3)在(2)的条件下,过点Q的直线与椭圆C交于M,N两点,求
OM
ON
的取值范围.

查看答案和解析>>

已知椭圆C=1(ab>0),F1F2分别为椭圆C的左、右焦点,A1A2分别为椭圆C的左、右顶点,过右焦点F2且垂直于x轴的直线与椭圆C在第一象限的交点为M(,2).

(1)求椭圆C的标准方程;

(2)直线lxmy+1与椭圆C交于PQ两点,直线A1PA2Q交于点S.试问:当直线l变化时,点S是否恒在一条定直线上?若是,请写出这条定直线的方程,并证明你的结论:若不是,请说明理由.

查看答案和解析>>

精英家教网已知以原点O为中心的椭圆的一条准线方程为y=
4
3
3
,离心率e=
3
2
,M是椭圆上的动点
(Ⅰ)若C,D的坐标分别是(0,-
3
),(0,
3
)
,求|MC|•|MD|的最大值;
(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M在x轴上的射影,点Q满足条件:
OQ
=
OM
+
ON
QA
BA
=0
、求线段QB的中点P的轨迹方程.

查看答案和解析>>

第Ⅰ卷

选择题

题号

1

2

3

4

5

6

7

8

答案

B

B

B

A

C

A

D

C

 

第Ⅱ卷

填空题

9、3 , ;    10、;     11、(A); (B);(C)();    12、0.5       13、28 ,

解答题

14、(本小题满分12分)

解:(Ⅰ)

                       =+

                       =+

  所以,的最小正周期 

(Ⅱ)

    

由三角函数图象知:

的取值范围是

 

 

 

 

15、(本小题满分12分)

方法一:

证:(Ⅰ)在Rt△BAD中,AD=2,BD=

AB=2,ABCD为正方形,

因此BDAC.                    

PA⊥平面ABCDBDÌ平面ABCD

BDPA .                      

又∵PAAC=A

BD⊥平面PAC.                 

解:(Ⅱ)由PA⊥面ABCD,知AD为PD在平面ABCD的射影,又CDAD

CDPD,知∠PDA为二面角PCDB的平面角.                      

又∵PA=AD

∴∠PDA=450 .                                                       

(Ⅲ)∵PA=AB=AD=2

PB=PD=BD=

C到面PBD的距离为d,由

,                              

         

方法二:

证:(Ⅰ)建立如图所示的直角坐标系,

A(0,0,0)、D(0,2,0)、P(0,0,2).

在Rt△BAD中,AD=2,BD=

AB=2.

B(2,0,0)、C(2,2,0),

  

BDAPBDAC,又APAC=A

BD⊥平面PAC.                       

解:(Ⅱ)由(Ⅰ)得.

设平面PCD的法向量为,则

,∴

故平面PCD的法向量可取为                              

PA⊥平面ABCD,∴为平面ABCD的法向量.             

设二面角P―CD―B的大小为q,依题意可得

q = 450 .                                                      

(Ⅲ)由(Ⅰ)得

设平面PBD的法向量为,则

,∴x=y=z

故平面PBD的法向量可取为.                             

C到面PBD的距离为                          

 

 

16、(本小题满分14分)

解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件为“4次均击中目标”,则

(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则

(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。

 

17、(本小题满分14分)

解:(Ⅰ)由  得

可得

因为,所以   解得,因而

 (Ⅱ)因为是首项、公比的等比数列,故

则数列的前n项和

前两式相减,得 

   即 

 

 

18、(本小题满分14分)

解:(1) ,设切点为,则曲线在点P的切线的斜率,由题意知有解,

.

 (2)若函数可以在时取得极值,

有两个解,且满足.

易得.

(3)由(2),得.

根据题意,()恒成立.

∵函数)在时有极大值(用求导的方法),

且在端点处的值为.

∴函数)的最大值为.  

所以.

 

19、(本小题满分14分)

解:(1)∵成等比数列 ∴ 

是椭圆上任意一点,依椭圆的定义得

 

为所求的椭圆方程.

(2)假设存在,因与直线相交,不可能垂直

因此可设的方程为:

  ①

方程①有两个不等的实数根

 ②

设两个交点的坐标分别为 ∴

∵线段恰被直线平分 ∴

 ∴ ③ 把③代入②得

  ∴ ∴解得

∴直线的倾斜角范围为

 

 

 


同步练习册答案