题目列表(包括答案和解析)
()(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的
倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
如下图,矩形ABCD,|AB|=1,|BC|=a,PA⊥平面ABCD,|PA|=1。
(1)BC边上是否存在点Q,使得PQ⊥QD,并说明理由;
(2)若BC边上存在唯一的点Q使得PQ⊥QD,指出点Q的位置,并求出此时AD与平面
PDQ所成的角的正弦值;
(3)在(2)的条件下,求二面角Q―PD―A的正弦值。
![]()
| 1 | 2 |
(本题满分12分)
在三棱柱ABC-A1B1C1中,∠ACB=
,AC=CB=1,D1是线段A1B1上一动点(可以与A1或B1重合)。过D1和CC1的平面与AB交于D。
(1)若四边形CDD1C1总是矩形,求证:三棱柱ABC-A1B1C1为直三棱柱;
(2)在(1)的条件下,求二面角B-AD1-C的取值范围。
![]()
![]()
(1)指出动点P的轨迹(即说明动点P在满足给定的条件下运动时所形成的图形),证明你的结论;
(2)以轨迹上的动点P为顶点的三棱锥P-CDE的最大体积是正四棱锥S—ABCD体积的几分之几?
(3)设动点P在G点的位置时三棱锥P-CDE的体积取最大值V1,二面角G—DE—C的大小为α,二面角G—CE—D的大小为β,求tanα∶tanβ的值;
(4)若将“E是BC的中点”改为“E是BC上异于B、C的一定点”,其他条件不变,请指出点P的轨迹,证明你的结论.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com