题目列表(包括答案和解析)
(本小题满分14分)如图,已知A、B、C是长轴长为4的椭圆上的三点,点A是椭圆的右顶点,直线BC过椭圆的中心O(O为坐标原点),且
.
(1)求椭圆的标准方程;
(2)如果椭圆上的两点P、Q,使得直线CP、CQ
与
轴围成底边在
轴上的等腰三角形,
是否总存在实数
使得
?
请给出证明.
(本小题满分14分)已知x,y之间的一组数据如下表:
| x | 1 | 3 | 6 | 7 | 8 |
| y | 1 | 2 | 3 | 4 | 5 |
(本小题满分12分)(文题满分14分)
如图,
为半圆,AB为半圆直径,O为半圆圆心,且
,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变。
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过点B的直线
与曲线C交于M、N两点,与OD所在直线交于E点,若
为定值。
![]()
(本题满分14分)已知
,
,
(1)若f(x)在
处取得极值,试求c的值和f(x)的单调增区间;
(2)如右图所示,若函数
的图象在
连续光滑,试猜想拉格朗日中值定理:即一定存在
使得
?(用含有a,b,f(a),f(b)的表达式直接回答)
(3)利用(2)证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4.
(本题是选做题,满分28分,请在下面四个题目中选两个作答,每小题14分,多做按前两题给分)
A.(选修4-1:几何证明选讲)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,
,PD=1,BD=8,求线段BC的长.
B.(选修4-2:矩阵与变换)
在直角坐标系中,已知椭圆
,矩阵阵
,
,求在矩阵
作用下变换所得到的图形的面积.
C.(选修4-4:坐标系与参数方程)
直线
(
为参数,
为常数且
)被以原点为极点,
轴的正半轴为极轴,方程为
的曲线所截,求截得的弦长.
D.(选修4-5:不等式选讲)
设
,求证:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com