题目列表(包括答案和解析)
(15分)已知
是数列
的前
项和,
(
,
),且
.
(1)求
的值,并写出
和
的关系式;
(2)求数列
的通项公式及
的表达式;
(3)我们可以证明:若数列
有上界(即存在常数
,使得
对一切
恒成立)且单调递增;或数列
有下界(即存在常数
,使得
对一切
恒成立)且单调递减,则
存在.直接利用上述结论,证明:
存在.
已知Sn是数列{an}的前n项和,
(
,
),且
.
(1)求a2的值,并写出an和an+1的关系式;
(2)求数列{an}的通项公式及Sn的表达式;
(3)我们可以证明:若数列{bn}有上界(即存在常数A,使得bn<A对一切n∈N*恒成立)且单调递增;或数列{bn}有下界(即存在常数B,使得bn>B对一切n∈N*恒成立)且单调递减,则
存在.直接利用上述结论,证明:
存在.
已知公比为
的等比数列{
}是递减数列,且满足
+
+
=
,![]()
![]()
=![]()
(I)求数列{
}的通项公式;
(II)求数列{
}的前
项和为
;
(Ⅲ)若
,证明:
≥
.
1―5 BCCCD 6―10 ACBBA 11―
13.
3 14.
15. 2 16. 
17.解:(1)因为
所以
即
因为三角形ABC的外接圆半径为1,由正弦定理,得
于是
即
因为
所以
故三角形ABC是直角三角形
因为
,
所以
,故
(2)
设
则
因为
故
在
上单调递减函数.
所以
所以实数的取值范围是
18.解:(1)3名志愿者恰好连续3天参加社区服务工作的概率为
(2)随机变量
的分布列为:

0
1
2
3
P




19.解:(1)
正方形ABCD,

又二面角
是直二面角




又
ABEF是矩形,G是EF的中点,
又

而
故平面
(2)由(1)知平面
且交于GC,在平面BGC内作
垂足为H,则
是BG与平面AGC所成的角.
在
中,
,
.
即BG与平面AGC所成的角为
(3)由(2)知
作
垂足为O,连接HO,则
为二面角
的平面角
在
ABG中, 
在
中, 
在
中, 

20.解:(1)
①当
时,
故
在
上为减,
在
上为增,在
上为减.
②当
时,
故
在
上为减,
在
上为增,在
上为减.
(2)
的取值范围是
21.解:设
,
与
联立的

(Ⅰ)


(Ⅱ)(1)过点A的切线:
过点B的切线:
联立得点
所以点N在定直线
上
(2)
联立:
可得 

直线MN:
在
轴的截距为
,
直线MN在
轴上截距的取值范围是
22.解:(Ⅰ)
(1)
时,
时不等式成立
(2)假设
时不等式成立,即

时不等式成立
由(1)(2)可知,对
都有
(Ⅱ)(1)

是递减数列
(2)



湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com