21. 2009年求精中学高一下期第二阶段数学测试 查看更多

 

题目列表(包括答案和解析)

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

(07年福建卷理)(本小题满分12分)在中,

(Ⅰ)求角的大小;

(Ⅱ)若最大边的边长为,求最小边的边长.

查看答案和解析>>

(07年福建卷文)(本小题满分12分)

设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).

(I)求f (x)的最小值h(t);

(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.

查看答案和解析>>

(07年福建卷文)(本小题满分12分)

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,DCC1中点.

(I)求证:AB1⊥平面A1BD;

(II)求二面角A-A1D-B的大小.

查看答案和解析>>

一、          选择题:CACDA,ADCBB.

二、          填空题:11.(-4,2)   12.   13.-4    14.  12          15. 

三、解答题(16~18题,每题13分,19-21题12分,共75分)

16.解:∵

       ∴

    

17.证明一:(利用共线向量的判定定理证明)

作为基底,有:, ,从而, 所以A、E、F共线。

证明二:(利用三点共线的判定定理证明)

,而:,所以A、E、F共线。

(可以建立坐标系,利用求出等比分点坐标公式求出E、F的坐标,再证明A、E、F共线)

18.(1)f(x)=sin2x-(1+cos2x)+ sin2x-cos2x

    =sin(2x-)  5分                 ∴T==π   2分                                            

(2)函数y=f(x)的图象按=(φ,0)(φ>0)平移后,得y=sin(2(x-φ)-)    2分,此函数图象对称轴方程为2(x-φ)-=kπ+  k∈Z ,又f(x)平移后关于y轴对称,∴x=0满足上式有2(0-φ)-=kπ+,∴φ=-π-   k∈Z            2分

∵φ>0∴当k=-1时,φmin     2分                  

19.(1)由已知得=(sinθ,2)-(-2,co sθ)=(sinθ+2,2-cosθ)      1分     ∵     ∴?()=0

∴(cosθ,sinθ)(sinθ+2,2-cosθ)=0

∴cosθ(sinθ+2)+sinθ(2-cosθ)=0      2分

∴2cosθ+2sinθ=0     ∴tanθ=-1   ∵θ∈(-π,π)

∴θ=-或θ=     3分

(2)由已知=(cosθ+sinθ+2,sinθ+2-cosθ) 1分

 ∴||2=(cosθ+sinθ+2)2+(sinθ+2-cosθ)2=10+8sinθ 2分

∵||≤  ∴10+8sinθ≤14   ∴sinθ≤  ∵θ∈(-π,π)

∴θ∈  3分

20.轮船从点C到点B耗时60分钟,从点B到点E耗时20分钟,而船始终匀速,可见BC=3EB                                                2分

   设EB=x,则BC=3x,由条件知∠BAE=60°,在△ABE中,由正弦定理得    ①

   在△ABC中,由正弦定理得    ②       2分

   由条件∠BAC=30°+30°=60° ∴sin∠BAC=sin∠BAE

   又∠ABC+∠ABE=180°        ∴sin∠BAC=sin(180°-∠ABC)=sin∠ABE  2分

   结合①②得   ∴AC=3AE  2分                          

   在△ACE中,由余弦定理,得

 CE2=AC2+AE2-2AC?AE?cos120°=9AE2+AE2+3AE2=13AE2=13×∴CE=20     2分  ∴BC=15  ∴船速v=15km/t    2分

21.解: 可以组建命题一:△ABC中,若a、b、c成等差数列,求证:(1)0<B≤

(2)

命题二:△ABC中,若a、b、c成等差数列求证:(1)0<B≤

(2)1<

命题三:△ABC中,若a、b、c成等差数列,求证:(1)

(2)1<

命题四:△ABC中,若a、b、c成等比数列,求证:(1)0<B≤

(2)1<

………………………………………………………………………………………………6分

下面给出命题一、二、三的证明:

(1)∵a、b、c成等差数列∴2b=a+c,∴b=

且B∈(0,π),∴0<B≤

(2)

(3)

∵0<B≤

下面给出命题四的证明:

(4)∵a、b、c成等比数列∴b2=a+c,

且B∈(0,π),∴0<B≤…14分

评分时若构建命题的结论仅一个但给出了正确证明,可判7分;若构建命题完全正确但论证仅正确给出一个,可判10分;若组建命题出现了错误,应判0分,即坚持错不得分原则

 

 


同步练习册答案