题目列表(包括答案和解析)
定义:我们把椭圆的焦距与长轴的长度之比即
,叫做椭圆的离心率.若两个椭圆的离心率
相同,称这两个椭圆相似.
(1)判断椭圆
与椭圆
是否相似?并说明理由;
(2)若椭圆![]()
与椭圆
相似,求
的值;
(3)设动直线
与(2)中的椭圆
交于
两点,试探究:在椭圆
上是否存在异于
的定点
,使得直线
的斜率之积为定值?若存在,求出定点
的坐标;若不存在,说明理由.
已知椭圆C:
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于A、B两点,以
弦为直径的圆过坐标原点
,试探讨点
到直线
的距离是否为定值?若是,求出这个定值;若不是,说明理由.
已知函数![]()
.
(1)讨论函数
在定义域内的极值点的个数;
(2)若函数
在
处取得极值,对![]()
,
恒成立,
求实数
的取值范围;
(3)当
时,求证:
.
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| r1 |
| 1 |
| r2 |
| b2 |
| a-ccosθ |
| b2 |
| a-ccos(π-θ) |
| b2 |
| a+ccosθ |
| 1 |
| r |
| 1 |
| r |
| 2a |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 1 |
| mn |
1. 构造向量
,
,所以
,
.由数量积的性质
,得
,即
的最大值为2.
2. ∵
,令
得
,所以
,当
时,
,当
时,
,所以当
时,
.
3.∵
,∴
,
,又
,∴
,则
,所以周期
.作出
在
上的图象知:若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,∴
;若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,
∴
.
4. 不等式
(
)表示的区域是如图所示的菱形的内部,
∵
,
当
,点
到点
的距离最大,此时
的最大值为
;
当
,点
到点
的距离最大,此时
的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有
种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有
种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有
种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为
.
6. ∵
,∴
,
设
,
,则
.
作出该不等式组表示的平面区域(图中的阴影部分
).
令
,则
,它表示斜率为
的一组平行直线,易知,当它经过点
时,
取得最小值.
解方程组
,得
,∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com