题目列表(包括答案和解析)
(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为
,其中
分别为甲、乙摸到的球的编号。
(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;
(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)
(3) 如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.
一.选择题:
1~5 ABDBC 6~10 ABDDC 11~12 BA
二.填空题:
13. 14. 15. 16.
三.解答题:
17.解:(1) , ……1分
, ……2分
由 得
,
又 ,, ……5分
(2)由(1)知,,又C 为锐角,
……10分
18.(1)记事件为甲出子,事件为乙猜对甲出子,
则,为相互独立的事件,记乙赢得1子的事件为
记三次游戏中甲获胜一次的事件为,则一次游戏中甲获胜的事件为,
则
(2)记乙获胜的事件为,则
=
甲获胜的概率大。
则分别为的中点,连接,
.则四边形是平行四边形
分别为的中点,平面
平面
(2)过作,垂足为,连接
则面
就是直线与面所成的角.
设,则
,直线与面所成的角是。
(3)由(2)时,
则,所以
又由(2)面,则
为二面角的平面角
20.解(1)∵ 无解
直线l与的图像不相切。 5分
(2)由题意得;在x∈[-2,2]内恒成立
即: 设
∵ ∴g(x) 在x∈[-2,2]内单调递增
∴g(x)的最大值为 12分
21.解:(1)证明:
,即
是以2为公比的等比数列
(2)解:, ,
22.(1)设
,在线段的中垂线上
,又,则
又,
又
化简得即为的轨迹方程
(2)设直线
由
又
由得
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com