(1)求证:对任意的正实数.上存在反函数: 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=exg(x)=1+ax+
1
2
x2
,a∈R.
(1)设函数F(x)=f(x)-g(x),讨论F(x)的极值点的个数;
(2)若-2≤a≤1,求证:对任意的x1,x2∈[1,2],且x1<x2时,都有
g(x2)-g(x1)
f(x2)-f(x1)
a+2
3

查看答案和解析>>

精英家教网如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)若二面角C-AE-D的大小为60°,求λ的值.

查看答案和解析>>

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1)
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)是否存在点E使AE与平面SBD所成的角θ满足sinθ=
3
4
,若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

已知函数g(x)=-
a2
3
x3+
a
2
x2+cx(a≠0)

(I)当a=1时,若函数g(x)在区间(-1,1)上是增函数,求实数c的取值范围;
(II)当a≥
1
2
时,(1)求证:对任意的x∈[0,1],g′(x)≤1的充要条件是c≤
3
4

(2)若关于x的实系数方程g′(x)=0有两个实根α,β,求证:|α|≤1,且|β|≤1的充要条件是-
1
4
≤c≤a2-a

查看答案和解析>>

设函数f(x)=x2+bln(2x+1),其中b≠0.
(1)若己知函数f(x)是增函数,求实数b的取值范围;
(2)若己知b=1,求证:对任意的正整数n,不等式n<f(n)恒成立.

查看答案和解析>>


同步练习册答案