求两人得分之和的分布列及数学期望. 查看更多

 

题目列表(包括答案和解析)

(2007北京崇文模拟)甲乙两人参加奥运知识竞赛,假设甲、乙两人答对每题的概率分别为,且答对一题得1分,答不对得0分.

(1)甲、乙两人各答一题,求两人得分之和ξ的分布列及数学期望;

(2)甲、乙两人各答两题,每人每答一题记为一次,求这四次答题中至少有一次答对的概率.

查看答案和解析>>

(本小题满分12分)对某班级50名同学一年来参加社会实践的次数进行的调查统计,得到如下频率分布表:

参加次数

0

1

2

3

人数

0.1

02

0.4

0.3

根据上表信息解答以下问题:

(Ⅰ)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数在区间内有零点”的事件为,求发生的概率

(Ⅱ)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

对某班级50名同学一年来参加社会实践的次数进行的调查统计,得到如下频率分布表:

参加次数

0

1

2

3

人数

0.1

0.2

0.4

0.3

根据上表信息解答以下问题:

(1)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数在区间内有零点”的事件为,求发生的概率

(2)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望

 

查看答案和解析>>

甲、乙两人参加奥运知识竞赛,假设甲、乙两人答对每题的概率分别为,且答对一题得1分,答不对得0分.
(I)甲、乙两人各答一题,求两人得分之和ξ的分布列及数学期望;
(II)甲、乙两人各答两题,每人每答一题记为一次,求这四次答题中至少有一次答对的概率.

查看答案和解析>>

对某班级50名同学一年来参加社会实践的次数进行的调查统计,得到如下频率分布表:
参加次数
0
1
2
3
人数
0.1
0.2
0.4
0.3
根据上表信息解答以下问题:
(1)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数在区间内有零点”的事件为,求发生的概率
(2)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望

查看答案和解析>>

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

B

B

C

C

D

D

D

A

A

 

二、填空题(每小题5分,共20分)

13.         14.       15. 1            16.

三、简答题

17.解:依题记“甲答对一题”为事件A ;“乙答对一题”为事件B

2分

∴ξ的分布列:

ξ

0

1

2

P

                                                          8分

                              10分

18.解:当时,原式                              3分

时,有                             

∴原式=                           7分

时,

∴原式                                                   11分

综上所述:                              12分

19.解:设切点(),                                              3分

∵切线与直线平行

          或                        10分

∴切点坐标(1,-8)(-1,-12)

∴切线方程:

即:                                               12分

21.解:设底面一边长为,则另一边长

∴高为                                    3分

由:            ∴

∵体积

                                       6分

(舍去)

只有一个极值点

,此时高1.2m,最大容积为         11分

答:高为1.2m 时体积最大,最大值为1.8              12分

22.解:假设存在

时,由即:

时,   ∴

猜想:

证明:1. 当时,已证

         2. 假设时结论成立

      

即为时结论也成立

由(1)(2)可知,对大于1的自然数n,存在,使成立                                                             12分


同步练习册答案