(Ⅰ)当时.若在上单调递增.求的取值范围, 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)当时,若上单调递增,求的取值范围;

(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值;

(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。

查看答案和解析>>

已知函数

(Ⅰ)当时,若上单调递增,求实数的取值范围;

(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值.

查看答案和解析>>

已知函数

(1)若上单调递增,求的取值范围;

(2)若定义在区间D上的函数对于区间上的任意两个值总有以下不等式成立,则称函数为区间上的 “凹函数”.试证当时,为“凹函数”.

 

查看答案和解析>>

已知函数
(1)若上单调递增,求的取值范围;
(2)若定义在区间D上的函数对于区间上的任意两个值总有以下不等式成立,则称函数为区间上的 “凹函数”.试证当时,为“凹函数”.

查看答案和解析>>

已知函数
(1)若上单调递增,求的取值范围;
(2)若定义在区间D上的函数对于区间上的任意两个值总有以下不等式成立,则称函数为区间上的 “凹函数”.试证当时,为“凹函数”.

查看答案和解析>>


同步练习册答案