题目列表(包括答案和解析)
求证:无论a取什么实数,二次函数y=x2+ax+a-2的图象都与x轴相交于两个不同的点,并求出这两点间距离最小时的二次函数解析式.
如图点
,点
在
轴上运动,
点在
轴上,
为动点,且![]()
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
的直线
(不与
轴垂直)与曲线
交于
两点,设点
,
与
的夹角为
,
求证: ![]()
已知点
,动点
、
分别在
、
轴上运动,满足
,
为动点,并且满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
的直线
(不与
轴垂直)与曲线
交于
两点,设点
,
与
的夹角为
,求证:
.
已知圆
交
轴于
两点,曲线
是以
为长轴,直线![]()
为准线的椭圆.
(1)求椭圆的标准方程;
(2)若
是直线
上的任意一点,以
为直径的圆
与圆
相交于
两点,求证:直线
必过定点
,并求出点
的坐标。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com