2°当k≠0时.设 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=
1
3
ax3+bx2+cx(a<b<c),其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.
(1)求证:0≤
b
a
<1

(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(3)若当x≥k时(k是与a,b,c无关的常数),恒有f′(x)+a<0,试求k的最小值.

查看答案和解析>>

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时.求证:kPM•kPN是与点P位置无关的定值.

查看答案和解析>>

设函数f(x)=ax+bx+1(a,b为实数),F(x)=

(1)若f(-1)=0且对任意实数x均有f(x)成立,求F(x)表达式。

(2)在(1)的条件下,当x时,g(x)=f(x)-kx是单调函数,求实数k的取值范围。

(3)(理)设m>0,n<0且m+n>0,a>0且f(x)为偶函数,求证:F(m)+F(n)>0。

查看答案和解析>>

设函数f(x)=数学公式ax3+bx2+cx(a<b<c),其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.
(1)求证:数学公式
(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(3)若当x≥k时(k是与a,b,c无关的常数),恒有f′(x)+a<0,试求k的最小值.

查看答案和解析>>

设函数f(x)=ax3+bx2+cx(a<b<c),其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.
(1)求证:
(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(3)若当x≥k时(k是与a,b,c无关的常数),恒有f′(x)+a<0,试求k的最小值.

查看答案和解析>>


同步练习册答案