16. 解:(1)如图 查看更多

 

题目列表(包括答案和解析)

:如图,在平面直角坐标系xoy中,抛物线yx2x-10与x轴的交点为A,与y轴的交点为点B,过点Bx轴的平行线BC,交抛物线于点C,连结AC.现有两动点PQ分别从OC两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OCPQ相交于点D,过点DDEOA,交CA于点E,射线QEx轴于点F.设动点PQ移动的时间为t(单位:秒)
(1)求ABC三点的坐标和抛物线的顶点坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当t∈(0)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

查看答案和解析>>

精英家教网如图,矩形纸片ABCD的边AB=24,AD=25,点E、F分别在边AB与BC上.现将纸片的右下角沿EF翻折,使得顶点B翻折后的新位置B1恰好落在边AD上.设
BEEF
=t
,EF=l,l关于t的函数为l=f(t),试求:
(1)函数f(t)的解析式;
(2)函数f(t)的定义域.

查看答案和解析>>

如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1
精英家教网
(1)求证:BE=EB1
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
精英家教网
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
 

∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

精英家教网如图,是网络工作者经常用来解释网络动作的蛇形模型:数1出现在第1行;数2,3出现在第2行;数6,5,4(从左至右)出现在第3行;数7,8,9,10出现在第4行;依此类推,则第63行从左至右算第6个数为
 

查看答案和解析>>

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1
x2
4
+y2=1和C2
x2
16
+
y2
4
=1,判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>


同步练习册答案