所以实数a的取值范围为≤a≤2.-------------------14分 查看更多

 

题目列表(包括答案和解析)

本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-2:矩阵与变换选做题

已知矩阵A=有一个属于特征值1的特征向量.  

(Ⅰ) 求矩阵A;

(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积. 

(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为

(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

(3)(本小题满分7分)选修4-5:不等式选讲选做题

已知函数,不等式上恒成立.

(Ⅰ)求的取值范围;

(Ⅱ)记的最大值为,若正实数满足,求的最大值.

 

查看答案和解析>>

(2011•洛阳二模)给出下列命题:
①设向量
e1
e2
满足|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,则实数t的取值范围是(-7,-
1
2
);
②已知一组正数x1,x2,x3,x4的方差为s2=
1
4
(x12+x22+x32+x42)-4,则x1+1,x2+1,x3+1,x4+1的平均数为1
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
 (写出所有假命题的序号).

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先在答题卡上把所选题目对应的题号填入括号中.
(1)选修4-2:矩阵与变换
已知二阶矩阵M=
a1
3d
有特征值λ=-1及对应的一个特征向量e1=
1
-3

(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为
x=2+t
y=t+1
(t
为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为p2-4pcosθ+3=0.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(3)选修4-5:不等式选讲
已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先在答题卡上把所选题目对应的题号填入括号中.
(1)选修4-2:矩阵与变换
已知二阶矩阵有特征值λ=-1及对应的一个特征向量
(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为p2-4pcosθ+3=0.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(3)选修4-5:不等式选讲
已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>


同步练习册答案