题目列表(包括答案和解析)
本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-2:矩阵与变换选做题
已知矩阵A=
有一个属于特征值1的特征向量
.
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
,点O(0,0),M(2,-1),N(0,2),求
在矩阵AB的对应变换作用下所得到的
的面积.
(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线
的参数方程为
,曲线
的极坐标方程为
.
(Ⅰ)将曲线
的参数方程化为普通方程;(Ⅱ)判断曲线
与曲线
的交点个数,并说明理由.
(3)(本小题满分7分)选修4-5:不等式选讲选做题
已知函数
,不等式
在
上恒成立.
(Ⅰ)求
的取值范围;
(Ⅱ)记
的最大值为
,若正实数
满足
,求
的最大值.
| e1 |
| e2 |
| e1 |
| e2 |
| e1 |
| e2 |
| π |
| 3 |
| e1 |
| e2 |
| e1 |
| e2 |
| 1 |
| 2 |
| 1 |
| 4 |
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
|
|
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com