解:(Ⅰ)设圆的方程为: ----------1分 查看更多

 

题目列表(包括答案和解析)

(1)若椭圆的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦点依次为F1、F2,P是椭圆上异于长轴端点的任意一点.在此条件下我们可以提出这样一个问题:“设△PF1F2的过P角的外角平分线为l,自焦点F2引l的垂线,垂足为Q,试求Q点的轨迹方程?”
对该问题某同学给出了一个正确的求解,但部分解答过程因作业本受潮模糊了,我们在
精英家教网
这些模糊地方划了线,请你将它补充完整.
解:延长F2Q 交F1P的延长线于E,据题意,
E与F2关于l对称,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 

在△EF1F2中,显然OQ是平行于EF1的中位线,
所以|OQ|=
1
2
|EF1|=
 

注意到P是椭圆上异于长轴端点的点,所以Q点的轨迹是
 

其方程是:
 

(2)如图2,双曲线的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦点依次为F1、F2,P是双曲线上异于实轴端点的任意一点.请你试着提出与(1)类似的问题,并加以证明.

查看答案和解析>>

已知椭圆C1的方程为
x2
4
+y2=1
,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A和B,且
OA
OB
>2
(其中O为原点),求k的范围.
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).

查看答案和解析>>

已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求k的范围.
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).

查看答案和解析>>

 已知,椭圆C的方程为分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的外切、与内切

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点作斜率为的直线与椭圆C相交于AB两点,与轴相交于点D,若

的值;

(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T

的椭圆的切线方程为=1.”利用上述结论,解答下面问题:

已知点Q是直线上的动点,过点Q作椭圆C的两条切线QMQN

MN为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。

 

 

 

 

 

 

查看答案和解析>>

由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,求动点P的轨迹方程,设计解决该问题的一个算法.

查看答案和解析>>


同步练习册答案