解析:显然S1是正确的.假设后三个数均未算错.则a1=8.a2=12.a3=16.a4=29.可知a22≠a1a3.故S2.S3中必有一个数算错了.若S2算错了.则a4=29=a1q3..显然S3=36≠8(1+q+q2).矛盾.只可能是S3算错了.此时由a2=12得.a3=18.a4=27.S4=S2+18+27=65.满足题设.选C.评析:本题考查等比数列的基本概念与性质和学生推理的能力. 查看更多

 

题目列表(包括答案和解析)

某同学回答“用数学归纳法证明<n+1(n∈N)”的过程如下:

证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有<k+1,那么当n=k+1时,=(k+1)+1,所以当n=k+1时命题是正确的,由(1)(2)可知对于n∈N,命题都是正确的.以上证法是错误的,错误在于(    )

A.当n=1时,验证过程不具体

B.归纳假设的写法不正确

C.从k到k+1的推理不严密

D.从k到k+1的推理过程没有使用归纳假设

查看答案和解析>>

某同学回答“用数学归纳法证明<n+1(n∈N)”的过程如下:

证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有<k+1,那么当n=k+1时,(k+1)+1,所以当n=k+1时命题是正确的,由(1)、(2)可知对于(n∈N),命题都是正确的.以上证法是错误的,错误在于(    )

A.当n=1时,验证过程不具体

B.归纳假设的写法不正确

C.从k到k+1的推理不严密

D.从k到k+1的推理过程没有使用归纳假设

查看答案和解析>>

(2010•福建模拟)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n

所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立  ②等式(*)不成立  ③证明正确  ④证明不正确
试写出所有正确判断的序号
①③
①③

查看答案和解析>>

下列说法:的否定是函数 的最小正周期是命题函数处有极值,则的否命题是真命题;上的奇函数,的解析式是,则时的解析式为.其中正确的说法是__________

 

查看答案和解析>>

在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:

(1)选择题得满分(50分)的概率;

(2)选择题所得分数的数学期望。

【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:

第二问中,依题意,该考生得分的范围为{35,40,45,50}         

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                            

得分为40分的概率为: 

同理求得,得分为45分的概率为: 

得分为50分的概率为:

得到分布列和期望值。

解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:                   …………5分

(2)依题意,该考生得分的范围为{35,40,45,50}            …………6分

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                              …………7分

得分为40分的概率为:     …………8分

同理求得,得分为45分的概率为:                     …………9分

得分为50分的概率为:                      …………10分

所以得分的分布列为

35

40

45

50

 

数学期望

 

查看答案和解析>>


同步练习册答案