解:(1). - --------4分 查看更多

 

题目列表(包括答案和解析)

(本题满分8分.老教材试题第1小题4分,第2小题4分;新教材试题第1小题3分,第2小题5分.)
(老教材)
设a为实数,方程2x2-8x+a+1=0的一个虚根的模是
5

(1)求a的值;
(2)在复数范围内求方程的解.
(新教材)
设函数f(x)=2x+p,(p为常数且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在满足(1)的条件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>

把函数的图象按向量平移得到函数的图象. 

(1)求函数的解析式; (2)若,证明:.

【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。

(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 证明:令,……6分

……8分

,∴,∴上单调递增.……10分

,即

 

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调递减区间;

(Ⅱ)令函数),求函数的最大值的表达式

【解析】第一问中利用令,

第二问中,=

=

= ,则借助于二次函数分类讨论得到最值。

(Ⅰ)解:令,

的单调递减区间为:…………………4

(Ⅱ)解:=

=

=

 ,则……………………4

对称轴

①   当时,=……………1

②  当时,=……………1

③  当时,   ……………1

综上:

 

查看答案和解析>>

(本题满分14分,其中第1小题4分,第2小题6分,第3小题4分)

已知函数

(Ⅰ)求函数的定义域;

(Ⅱ)若函数的定义域关于坐标原点对称,试讨论它的奇偶性和单调性;

(Ⅲ)在(Ⅱ)的条件下,记的反函数,若关于x的方程有解,求k的取值范围。

查看答案和解析>>

(本题满分8分.老教材试题第1小题4分,第2小题4分;新教材试题第1小题3分,第2小题5分.)
(老教材)
设a为实数,方程2x2-8x+a+1=0的一个虚根的模是数学公式
(1)求a的值;
(2)在复数范围内求方程的解.
(新教材)
设函数f(x)=2x+p,(p为常数且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在满足(1)的条件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>


同步练习册答案