故圆心P的轨迹E的方程为 查看更多

 

题目列表(包括答案和解析)

(2008•襄阳模拟)在△ABC中,AC=2
3
,点B是椭圆
x2
5
+
y2
4
=1
的上顶点,l是双曲线x2-y2=-2位于x轴下方的准线,当AC在直线l上运动时.
(1)求△ABC外接圆的圆心P的轨迹E的方程;
(2)过定点F(0,
3
2
)作互相垂直的直线l1、l2,分别交轨迹E于点M、N和点R、Q.求四边形MRNQ的面积的最小值.

查看答案和解析>>

已知圆C1的方程为x2+y2+4x-5=0,圆C2的方程为x2+y2-4x+3=0,动圆C与圆C1、C2相外切.
(I)求动圆C圆心轨迹E的方程;
(II)若直线l过点(2,0)且与轨迹E交于P、Q两点.
①设点M(m,0),问:是否存在实数m,使得直线l绕点(2,0)无论怎样转动,都有
MP
MQ
=0成立?若存在,求出实数m的值;若不存在,请说明理由;
②过P、Q作直线x=
1
2
的垂线PA、QB,垂足分别为A、B,记λ=
|
PA
|+|
QB
|
|
AB
|
,求λ,的取值范围.

查看答案和解析>>

(2011•西安模拟)设动圆P过点A(-1,0),且与圆B:x2+y2-2x-7=0相切.
(Ⅰ)求动圆圆心P的轨迹Ω的方程;
(Ⅱ)设点Q(m,n)在曲线Ω上,求证:直线l:mx+2ny=2与曲线Ω有唯一的公共点;
(Ⅲ)设(Ⅱ)中的直线l与圆B交于点E,F,求证:满足
AR
=
AE
+
AF
的点R必在圆B上.

查看答案和解析>>

精英家教网已知圆P过点F(0,
1
4
)
,且与直线y=-
1
4
相切.
(Ⅰ)求圆心P的轨迹M的方程;
(Ⅱ)若直角三角形ABC的三个顶点在轨迹M上,且点B的横坐标为1,过点A、C分别作轨迹M的切线,两切线相交于点D,直线AC与y轴交于点E,当直线BC的斜率在[3,4]上变化时,直线DE斜率是否存在最大值,若存在,求其最大值和直线BC的方程;若不存在,请说明理由?

查看答案和解析>>

已知以动点P为圆心的圆与直线y=-
1
20
相切,且与圆x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求动P的轨迹C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.
    (1)求直线L斜率k的取值范围;
    (2)设椭圆E的方程为
x2
2
+
y2
a
=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若
OR
OS
=0,求E离心率的范围.

查看答案和解析>>


同步练习册答案