题目列表(包括答案和解析)
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
|
日 期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
|
温差 |
10 |
11 |
13 |
12 |
8 |
|
发芽数 |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
已知回归直线方程是:
,其中
,
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
|
日期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
|
温差x(℃) |
10 |
11 |
13 |
12 |
8 |
|
发芽y(颗) |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验.
回归直线方程参考公式:![]()
, ![]()
![]()
(1)请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则
认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(3)请预测温差为14℃的发芽数。
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
| 日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x(℃) | 10 | 11 | 13 | 12 | 8 |
| 发芽y(颗) | 23 | 25 | 30 | 26 | 16 |
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
| 日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差 | 10 | 11 | 13 | 12 | 8 |
| 发芽数 | 23 | 25 | 30 | 26 | 16 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com