因此 为正整数.方法二: 查看更多

 

题目列表(包括答案和解析)

(2013•怀化二模)如图1,小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1,再把正方形A1B1C1D1的各边延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,正方形AnBnCnDn的面积为
5n
5n
.(用含有n的式子表示,n为正整数)

查看答案和解析>>

精英家教网我们用部分自然数构造如下的数表:用aij(i≥j)表示第i行第j个数(i、j为正整数),使ai1=aii=i;每行中的其余各数分别等于其“肩膀”上的两个数之和(第一、二行除外,如图),设第n(n为正整数)行中各数之和为bn
(Ⅰ)试写出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推测bn+1和bn的关系(无需证明);
(Ⅱ)证明数列{bn+2}是等比数列,并求数列{bn}的通项公式bn
(Ⅲ)数列{bn}中是否存在不同的三项bp,bq,br(p、q、r为正整数)恰好成等差数列?若存在,求出p、q、r的关系;若不存在,请说明理由.

查看答案和解析>>

(2008•长宁区二模)已知各项均为正数的数列{an}的前n项和sn满足s1>1,且6sn=(an+1)(an+2)(n为正整数).
(1)求{an}的通项公式;
(2)设数列{bn}满足bn=
an,n为偶数
2an,n为奇数
,求Tn=b1+b2+…+bn
(3)设Cn=
bn+1
bn
,(n为正整数)
,问是否存在正整数N,使得n>N时恒有Cn>2008成立?若存在,请求出所有N的范围;若不存在,请说明理由.

查看答案和解析>>

(2008•闵行区二模)若等差数列{an}的前n项和为Sn,且满足
Sn
S2n
为常数,则称该数列为S数列.
(1)判断an=4n-2是否为S数列?并说明理由;
(2)若首项为a1的等差数列{an}(an不为常数)为S数列,试求出其通项;
(3)若首项为a1的各项为正数的等差数列{an}为S数列,设n+h=2008(n、h为正整数),求
1
Sn
+
1
Sh
的最小值.

查看答案和解析>>

(2012•江苏二模)已知各项均为正整数的数列{an}满足an<an+1,且存在正整数k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)当k=3,a1a2a3=6时,求数列{an}的前36项的和S36
(2)求数列{an}的通项an
(3)若数列{bn}满足bnbn+1=-21•(
12
)an-8
,且b1=192,其前n项积为Tn,试问n为何值时,Tn取得最大值?

查看答案和解析>>


同步练习册答案