设x=cosα,y=cosβ, 由已知x,y不能取负值,否则,若x<0,则则已知不成立,故x,y均不小于0. ∴cosαsinβ+cosβsinα=1,α+β=π/2,x+y=cosα+sinα最小值是1, 7 t=+16×()2/V=+≥2=8 查看更多

 

题目列表(包括答案和解析)

(A)4-2矩阵与变换
已知二阶矩阵M的特征值是λ1=1,λ2=2,属于λ1的一个特征向量是e1=
1
1
,属于λ2的一个特征向量是e2=
-1
2
,点A对应的列向量是a=
1
4

(Ⅰ)设a=me1+ne2,求实数m,n的值.
(Ⅱ)求点A在M5作用下的点的坐标.

(B)4-2极坐标与参数方程
已知直线l的极坐标方程为ρsin(θ-
π
3
)=3
,曲线C的参数方程为
x=cosθ
y=3sinθ
,设P点是曲线C上的任意一点,求P到直线l的距离的最大值.

查看答案和解析>>

(2012•洛阳模拟)已知直线l:
x=1+
1
2
t
y=
3
2
t
(t为参数),曲线C1
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的
1
2
倍,纵坐标压缩为原来的
3
2
倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

在平面直角坐标系xOy中,曲线C1的参数方程为
x=cosφ
y=sinφ
(φ为参数),曲线C2的参数方程为
x=acosφ
y=bsinφ
(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=
π
2
时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当α=
π
4
时,l与C1,C2的交点分别为A1,B1,当α=-
π
4
时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

已知二阶矩阵M=(
a1
0b
)有特征值λ1=2及对应的一个特征向量
e
1
=
1
1

(Ⅰ)求矩阵M;
(II)若
a
=
2
1
,求M10
a

(2)已知直线l:
x=1+
1
2
t
y=
3
2
t
(t为参数),曲线C1
x=cosθ
y=sinθ
  (θ为参数).
(Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的
1
2
倍,纵坐标压缩为原来的
3
2
倍,得到曲线C2C,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.
(3)已知函数f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)当m=5时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥1的解集是R,求m的取值范围.

查看答案和解析>>


同步练习册答案