19.(Ⅰ)证明:设.则 查看更多

 

题目列表(包括答案和解析)

,.

(Ⅰ)证明:

(Ⅱ)求证:在数轴上,介于之间,且距较远;

(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,

说明理由.

 

查看答案和解析>>

,.
(Ⅰ)证明:
(Ⅱ)求证:在数轴上,介于之间,且距较远;
(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.

查看答案和解析>>

,.
(Ⅰ)证明:
(Ⅱ)求证:在数轴上,介于之间,且距较远;
(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.

查看答案和解析>>

17.证明:假设f(x)至少有两个零点。不妨设有两个零点,则f()=0,f()=0

所以f()=f()与已知f(x)是单调函数矛盾,所以假设错误,因此f(x)在其定义域上是单调函数证明f(x)至多有一个零点

一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数X的概率分布。

(1)每次取出的产品不再放回去;    

(2)每次取出的产品仍放回去;

(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.

查看答案和解析>>

(Ⅰ)已知函数f(x)=
x
x+1
.数列{an}满足:an>0,a1=1,且
an+1
=f(
an
)
,记数列{bn}的前n项和为Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

查看答案和解析>>


同步练习册答案